Hardware implementation of multi-scale
Lucas-Kanade optical flow computation algorithm —
a demo

Krzysztof Blachut
AGH University of Science
and Technology Krakow, Poland
E-mail: kblachut@student.agh.edu.pl

Abstract—Motion detection is one of the most important
components in image processing and analysis systems. It can be
identified as a change in location or size of an object on subse-
quent frames. Moreover, the position of object, camera or both
may change. Motion velocity and direction can be determined
on the basis of the displacement of individual pixels and frame
acquisition frequency. To calculate the displacement, optical flow
methods can be used. One of them — the Lucas-Kanade algorithm
— was used in this work. The implementation uses a multi-
scale method. This allows the detection of displacements of
objects over greater distances. For hardware implementation the
FPGA platform was used because of the possibility of parallel
calculation and energy efficiency. In this work real-time video
stream processing with a resolution of 1280x720 pixels and a
frequency of 50 frames per second was obtained. The module
could be used in embedded vision systems such as surveillance
or autonomous vehicles.

Index Terms—FPGA, hardware implementation, real-time vi-
sion system, motion detection, optical flow, Lucas-Kanade algo-
rithm, multi-scale method

I. INTRODUCTION

The information about the displacement of pixels between
consecutive frames in a video sequence is described by optical
flow. It is a vector field in which each pixel corresponds to two
components, defining its shift in the vertical and horizontal
direction. Information about the pixel motion can be used
in more complex algorithms such as the detection, segmen-
tation and object tracking [2]. The Lucas-Kanade algorithm
has already been implemented on hardware platforms such
as an FPGA (Field Programmable Gate Array) or a GPU
(Graphics Procssing Unit), as well on a GPP (General Purpose
Processor).

In some cases it may be beneficial to apply the multi-scale
approach suggested in papers [1], [2], [3]. This method is
much better than the one-scale version, because it allows the
detection of large displacements between frames. This topic
has already been presented in the paper [1], where processing
a 640x480 @ 32 fps video stream was obtained.

The work presented in this paper was supported by AGH University of
Science and Technology project no. 11.11.120.714

Tomasz Kryjak, Member IEEE ~ Marek Gorgon, Senior Member IEEE
AGH University of Science
and Technology Krakow, Poland
E-mail: tomasz.kryjak@agh.edu.pl

AGH University of Science
and Technology Krakow, Poland
E-mail: mago@agh.edu.pl

II. THE USED ALGORITHM

In the Lucas-Kanade algorithm (LK), a solution to the
Equation (1) is searched. The pixel displacement is denoted
as (u, v) and I, I, and I; are spatial and temporal derivatives
respectively.

Lu+ T+ I =0 (1)

One of the solutions of Equation (1) was proposed by Bruce
D. Lucas and Takeo Kanade in the work [4]. It required an
additional assumption — the displacement of pixels in a small
neighbourhood is the same.

The equation for pixels in the considered window can be
presented in a matrix form (2). If the matrix is reversible, then
the solution exists and u, v can be obtained. On both sides of
the expression, the W matrix may appear, which gives more

weight to pixels in the centre of the window.

(Z) - _< Swil I, S wil,l, >_1(Swil, I)

However, for fast-moving objects the above presented ver-
sion of the LK algorithm is insufficient, because in this case the
pixel displacement is too large and the condition of analysing
a small neighbourhood is violated. In such a situation, a multi-
scale approach should be applied. It requires generating a pyra-
mid of images for each frame of the video sequence [3] . The
original frame is reduced twice, then the newly created image
is again reduced twice, etc.

In the next step optical flow is computed for the image in
the smallest scale according to the Lucas-Kanade algorithm.
The obtained flow is used to modify the previous image in the
lager scale — details in [1]. For the frame after transformation
and the current one, the optical flow is calculated again.

The whole procedure is repeated until the flow is calculated
for the input image. Figure 1 presents a diagram according to
which the calculations are performed on successive scales for
the test sequence Seat used in [5].

Fig. 1. A pyramid of images for one frame

Scaling |-
down =

iy I7

>| Warping : Scaling up Visualization |~

u%l:. RGB to gray :',

NN 1

Inverse

Summations | N
'’ matrix

Gaussian blur ([

Derivatives r

'I, i

DDR RAM Lucas-Kanade optical flow

Fig. 2. Scheme of the LK computing system

III. HARDWARE IMPLEMENTATION

The described Lucas-Kanade module was verified on the
VC707 development board equipped with a Virtex-7 FPGA de-
vice from Xilinx and external DDR RAM memory resources.
The scheme of the system is presented in Figure 2.

The single-scale version of the LK algorithm consists of
several modules. All of them were prepared in Vivado Desing
Suite using Verilog language. Firstly the incoming frame is
converted from the RGB colour space to gray-scale.

Then, the frame is convoluted with a one-dimensional mask
[1 4 6 4 1]/16, which is the approximation of a Gaussian
distribution. Blurring of the image is applied in rows and then
in columns.

In the next module, two frames are analysed simultaneously
— the previous one (stored in external RAM) and the current
from the camera. Then the spatial derivatives I, I, on the
previous frame and the temporal one I; (between previous and
current frame) are computed. To calculate spatial derivatives
the mask [-1 O 1]/2 (calculated for rows and columns) is
used, while the mask [-1 1]/2 is used to compute temporal
derivatives.

Then the corresponding derivatives are multiplied by them-
selves and added in the window. As part of the compromise
between resource consumption and accuracy, the window size
was set to 5x5. Weights w; in Equation (2) are values of
a two-dimensional Gaussian function. The last step before
calculating the flow for each pixel is matrix inversion as in
[5]. In addition, thresholding is applied, which allows to filter
results that may be incorrect.

The described modules enables LK computations in one
scale. The masks’ sizes used in the algorithm were chosen as
a compromise between accuracy and resource consumption.
For the multi-scale method, it was necessary to implement
some additional modules.

The first of them is responsible for reducing the size of the
image twice. For this purpose the pixels in rows and columns

with odd indexes are chosen. The flow (u, v) obtained in a
smaller scale is then up-scaled using bilinear interpolation.
A displacement along the x and y axes is specified for each
pixel, so it is possible to modify the picture in a larger scale
by initially shifting pixels. The use of this method enables
motion compensation. Therefore, the assumption about small
displacement used in the LK method is not violated.

The flow obtained for each pixel is shown graphically —
(Visualisation). In the case of hardware implementations the
results are often presented in the form of colours in the HSV
space. Pixel colour corresponds to the direction in which
they move and its saturation corresponds to the speed of
the movement. Firstly, the length of the vector is calculated.
Then with the help of the pre-computed values of the arc
tangent function (look-up table), the angle specified by (u,
v) is determined. In addition the conversion to the RGB color
space is made to correctly display the results on the screen.

In Table I the total consumption of resources on the VC707
board is presented. In addition to the Lucas-Kanade algorithm
module, the resources were used to support the external
memory controller and video pass-through.

TABLE I
FPGA RESOURCE UTILIZATION FOR THE VC707 BOARD

[Resource type | Used [Available [Percentage]

LUT 41167 | 303600 13,56%
Flip-Flop 52324 | 607200 8.62%
Block RAM 136 1030 18,01%
0B 177 700 25,29%

IV. SUMMARY

In this paper a hardware implementation of the multi-
scale version of the Lucas-Kanade optical flow computation
algorithm using FPGA platform was presented. Thanks to an
appropriate parallel-pipelined architecture, real-time process-
ing of a 1280x720 @50 fps video stream has been achieved.
The multi-scale method enables the detection of large dis-
placements between frames, which allows correct operation
for fast-moving objects.

REFERENCES

[1] F. Barranco, M. Tomasi, J. Diaz, M. Vanegas, E. Ros. "Parallel Archi-
tecture for Hierarchical Optical Flow Estimation Based on FPGA”. In:
IEEE 20.6 (2012), pp. 1058--1067.

[2] J.Y. Bouguet. ”"Pyramidal Implementation of the Affine Lucas Kanade
Feature Tracker. Description of the algorithm”. Tech. note, Intel Corpo-
ration, 2000.

[3] J. Bergen, P. Anandan, K. Hanna, R. Hingorani. “Hierarchical model-
based motion estimation”. In: Computer Vision ECCV’92 588 (1992),
pp. 237—252.

[4] B.D. Lucas, T. Kanade. ”An Iterative Image Registration Technique with
an Application to Stereo Vision (DARPA)”. In: Proceedings of the 1981
DARPA Image Understanding Workshop. 1981, pp. 121--130.

[5] D. Bagni, P. Kannan, S. Neuendorffer. "Demystifying the Lucas-Kanade
Optical Flow Algorithm with Vivado HLS”. Tech. note XAPP1300.
Xilinx, 2017.

