
Programming GPUs with CUDA
Tutorial at 18th IEEE CSE’15 and 13th IEEE EUC’15 conferences

Porto (Portugal). October, 20th, 2015

Manuel Ujaldón
A/Prof. @ University of Málaga (Spain)
Conjoint Senior Lecturer @ Univ. of Newcastle (Australia)
CUDA Fellow @ Nvidia

Tutorial contents [109 slides]

1. Introduction. [15 slides]
2. Architecture. [14]

1. CUDA hardware model. [3]
2. The third generation: Kepler (2012-2014). [5]
3. The fourth generation: Maxwell (2015-?). 5]
4. Summary by generation. [1]

3. Programming. [17]
4. Syntax. [19]

1. Basic elements. [12]
2. A couple of preliminary examples. [7]

5. Examples: VectorAdd, Stencil, ReverseArray, MxM. [31]
6. Bibliography, resources and tools. [13]

2

Prerequisites for this tutorial

You (probably) need experience with C.
You do not need parallel programming background

(but it helps if you have it).
You do not need knowledge about the GPU architecture:

We will start with the basic pillars.
You do not need graphics experience. Those were the old

times (shaders, Cg). With CUDA, it is not required any
knowledge about vertices, pixels, textures, ...

3

I. Introduction

Welcome to the GPU world

5

Commercial models available for Kepler:
GeForce vs. Tesla

Designed for gamers:
Price is a priority (<500€).
Availability and popularity.
Small video memory (1-2 GB.).
Frequency slightly ahead.
Hyper-Q only for CUDA streams.
Perfect for developing code

which can later run on a Tesla.

6

Oriented to HPC:
Reliable (3 years warranty).
For cluster deployment.
More video memory (6-12 GB.).
Tested for endless run (24/7).
Hyper-Q for MPI.
GPUDirect (RDMA) and other

features for GPU clusters.

GeForce GTX Titan

The characters of this story:
The CUDA family picture

7

The impressive evolution of CUDA

8

Year 2008

100.000.000
CUDA-capable GPUs
(6.000 Teslas only)

600.000.000 CUDA-capable GPUs
(and 450.000 Tesla high-end GPUs)

Year 2015

60
university courses

840 university courses

1
supercomputer

in top500.org
(77 TFLOPS)

75 supercomputers
in TOP500.org
(aggregate 54.000 TFLOPS)

150.000
CUDA downloads

3.000.000 CUDA downloads per year
(that is, one every 9 seconds)

4.000
academic papers

60.000
academic papers

Summary of GPU evolution

2001: First many-cores (vertex and pixel processors).
2003: Those processor become programmable (with Cg).
2006: Vertex and pixel processors unify.
2007: CUDA emerges.
2008: Double precision floating-point arithmetic.
2010: Operands are IEEE-normalized and memory is ECC.
2012: Wider support for irregular computing.
2014: The CPU-GPU memory space is unified.
Still pending: Reliability in clusters and connection to disk.

9

The 3 features which have made
the GPU such a unique processor

Simplified.
The control required for one thread is amortized by 31 more (warp).

Scalability.
Makes use of the huge data volume handled by applications to

define a sustainable parallelization model.

Productivity.
Endowed with efficient mechanisms for switching immediately to

another thread whenever the one being executed suffers from stalls.

CUDA essential keywords:
Warp, SIMD, latency hiding, free context switch.

10

Three reason for feeling attracted to GPUs

Cost
Low price due to a massive selling marketplace.
Three GPUs are sold for each CPU, and the ratio keeps growing.

Ubiquitous
Everybody already has a bunch of GPUs.
And you can purchase one almost everywhere.

Power
Ten years ago GPUs exceed 200 watts. Now, they populate the

Green 500 list. Progression in floating-point computation:

11

GFLOPS/w on float (32-bit) GFLOPS/w. on double (64-bit)

Fermi (2010)

Kepler (2012)

Maxwell (2014)

5-6 3

15-17 7

40 12

What is CUDA?
“Compute Unified Device Architecture”

A platform designed jointly at software and hardware levels to
make use of the GPU computational power in general-purpose
applications at three levels:

Software: It allows to program the GPU with minimal but
powerful SIMD extensions to enable heterogeneous
programming and attain an efficient and scalable execution.

Firmware: It offers a driver oriented to GPGPU
programming, which is compatible with the one used for
rendering. Straightforward APIs manage devices, memory, ...

Hardware: It exposes GPU parallelism for general-purpose
computing via a number of twin multiprocessors endowed
with cores and a memory hierarchy.

12

CUDA C at a glance

Essentially, it is C language with minimal extensions:
Programmer writes the program for a single thread, and the code is

automatically instanciated over hundreds of threads.

CUDA defines:
An architectural model:

With many processing cores grouped in multiprocessors who share a SIMD control unit.

A programming model:
Based on massive data parallelism and fine-grain parallelism.
Scalable: The code is executed on a different number of cores without recompiling it.

A memory management model:
More explicit to the programmer, where caches are not transparent anymore.

Goals:
Build a code which scales to hundreds of cores in a simple way, allowing

us to declare thousands of threads.
Allow heterogeneous computing (between CPUs and GPUs).

13

Terminology:
Host: The CPU and the memory on motherboard [DDR3 as of 2013].
Device: The graphics card [GPU + video memory]:

GPU: Nvidia GeForce/Tesla.
Video memory: GDDR5 as of 2015.

Heterogeneous Computing (1/4)

Host Device
14

CUDA executes a program on a device (the GPU), which is seen as a co-
processor for the host (the CPU).

CUDA can be seen as a library of functions which contains 3 types of
components:

Host: Control and access to devices.
Device: Specific functions for the devices.
All: Vector data types and a set of routines supported on both sides.

Heterogeneous Computing (2/4)

15

CPU (host)
 GPU
(device)

System Memory
(DDR3)

Video memory
(GDDR5)

Cores Caches
50 GB/s.

3-channel (192 bits = 24 bytes)
@ 1.333 GHz 32 GB/s.

PCI-e 3.0: 8 GB/s.

384 bits @ 2x 3 GHz 288 GB/s.

Heterogeneous Computing (3/4)

The code to be written in CUDA can be lower than 5%,
but exceed 50% of the execution time if remains on CPU. 16

#include <iostream>
#include <algorithm>

using namespace std;

#define N 1024
#define RADIUS 3
#define BLOCK_SIZE 16

__global__ void stencil_1d(int *in, int *out) {
 __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
 int gindex = threadIdx.x + blockIdx.x * blockDim.x;
 int lindex = threadIdx.x + RADIUS;

 // Read input elements into shared memory
 temp[lindex] = in[gindex];
 if (threadIdx.x < RADIUS) {
 temp[lindex - RADIUS] = in[gindex - RADIUS];
 temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];
 }

 // Synchronize (ensure all the data is available)
 __syncthreads();

 // Apply the stencil
 int result = 0;
 for (int offset = -RADIUS ; offset <= RADIUS ; offset++)
 result += temp[lindex + offset];

 // Store the result
 out[gindex] = result;
}

void fill_ints(int *x, int n) {
 fill_n(x, n, 1);
}

int main(void) {
 int *in, *out; // host copies of a, b, c
 int *d_in, *d_out; // device copies of a, b, c
 int size = (N + 2*RADIUS) * sizeof(int);

 // Alloc space for host copies and setup values
 in = (int *)malloc(size); fill_ints(in, N + 2*RADIUS);
 out = (int *)malloc(size); fill_ints(out, N + 2*RADIUS);

 // Alloc space for device copies
 cudaMalloc((void **)&d_in, size);
 cudaMalloc((void **)&d_out, size);

 // Copy to device
 cudaMemcpy(d_in, in, size, cudaMemcpyHostToDevice);
 cudaMemcpy(d_out, out, size, cudaMemcpyHostToDevice);

 // Launch stencil_1d() kernel on GPU
 stencil_1d<<<N/BLOCK_SIZE,BLOCK_SIZE>>>(d_in + RADIUS, d_out + RADIUS);

 // Copy result back to host
 cudaMemcpy(out, d_out, size, cudaMemcpyDeviceToHost);

 // Cleanup
 free(in); free(out);
 cudaFree(d_in); cudaFree(d_out);
 return 0;
}

Heterogeneous Computing (4/4)

HOST CODE:
- Serial code.
- Parallel code.
- Serial code.

DEVICE CODE:
Parallel function
written in CUDA.

17

GPU Computing

 NVIDIA GPU with the
CUDA Parallel Computing Architecture

C OpenCLtm Direct
Compute Fortran Java and

Python
C++

If we have a CUDA architecture, we can
approach programming in different ways...

... but this tutorial focuses on CUDA C.
18

CUDA evolution

Over the past 7 years, Nvidia has manufactured more than
500 million CUDA-enabled GPUs.

 CUDA has evolved in the opposite direction we are used to:
From scientists/researchers to more generic users.

19

CUDA version [year] Users and highlights

1.0 [2007]

2.0 [2008]

3.0 [2009]

4.0 [2011]

5.0 [2012]

6.0 [2014]

Next

Researchers and early adopters

Scientists and HPC applications

Application innovation leaders

Broader developer adoption

Dynamic parallelism, object linking, Remote DMA.

Unified CPU-GPU memory.

Half precision in floating-point arithmetic
II. Architecture

II.1. CUDA hardware model

Overview of CUDA hardware generations

22

16

2

4

6

8

10

12

14

G
FL

O
PS

 in
 d

ou
bl

e
pr

ec
is

io
n

fo
r

ea
ch

 w
at

t
co

ns
um

ed

2008

Tesla
Fermi

Kepler

24

18

20

22

2010 2012 2014 2016

Maxwell

Pascal

CUDA
FP64

Dynamic Parallelism

Unified memory
DX12

3D Memory
NVLink

The CUDA hardware model: SIMD processors
structured, a tale of hardware scalability

A GPU consists of:
N multiprocessors (or SMs), each

containing M cores (or stream procs).

Massive parallelism:
Applied to thousands of threads.
Sharing data at different levels.

Heterogeneous computing:
GPU:

Data intensive.
Fine-grain parallelism.

CPU:
Control/management.
Coarse-grain parallelism. 23

GPU
Multiprocessor N

Multiprocessor 2

Multiprocessor 1

Control
Unit

(SIMD)

Core 1 …Core 2 Core M

G80
(Tesla)

GT200
(Tesla)

GF100
(Fermi)

GK110
(Kepler)

(GM200)
Maxwell

Period

N (multip.)

M (cores/mult.)

cores

2006-07 2008-09 2010-11 2012-13 2014-15

16 30 14-16 13-15 4-24

8 8 32 192 128

128 240 448-512 2496-2880 512-3072

Memory hierarchy

Each multiprocessor has:
A register file.
Shared memory.
A constant cache and a texture

cache, both read-only.

Global memory is the actual
video memory (GDDR5):

Three times faster than the
DDR3 used by the CPU, but...

 ... around 500 times slower
than shared memory! (DRAM
versus SRAM).

2413

GPU

Multiprocessor N

Multiprocessor 2

Multiprocessor 1

Global memory

Shared memory

Control
Unit

(SIMD)Processor 1

Registers

…Processor 2

Registers

Processor M

Registers

Constant
cache

Texture
cache

II. 2. The third generation:
Kepler (GK1xx)

Kepler GK110 Block Diagram

7.1 billion transistors.
15 SMX multiprocs.
> 1 TFLOP FP64.
1.5 MB L2 Cache.
384-bit GDDR5.
PCI Express Gen3.

26

Multiprocessor evolution:
From SMs in Fermi to SMXs in Kepler

27

The SMX multiprocessor

28

Front-endInstruction scheduling
and issuing in warps

Instructions execution.
512 functional units:
- 192 for ALUs.
- 192 for FPUs S.P.
- 64 for FPUs D.P.
- 32 for load/store.
- 32 for SFUs (log,sqrt, ...)

Memory access

Back-end

Interface

From SM multiprocessor in Fermi GF100
to SMX multiprocessor in Kepler GK110

29

Front-end

Back-end

The way GigaThread scheduling works

Each grid provides a number of blocks, which are assigned
to mult. (up to 32 blocks in Maxwell, 16 in Kepler, 8 in Fermi).

Blocks are split into warps (groups) of 32 threads.
Warps are issued for each instruction in kernel threads (up

to 64 active warp-instructions in Kepler, 48 in Fermi). Ex:

30

II. 3. The fourth generation:
Maxwell (GM1xx)

Maxwell and SMM multiprocessors
(for GeForce GTX 980, 16 SMMs)

1870 Mt.
148 mm2.

32

The SMMs

Keep the same 4 warp
schedulers, and the same LD/
ST and SFU units.

Reduce the number of
cores for int and float:
from 192 to 128 units.

33

A comparison versus Kepler

34

Major enhancements

35

Power efficiency

36

II. 6. A summary of four generations

Scalability for the architecture:
A summary of four generations

38

Architecture

Time frame

CUDA Compute
Capability

TeslaTesla FermiFermi KeplerKeplerKeplerKepler MaxwellMaxwell

G80 GT200 GF100 GF104 GK104
(K10)

GK110
(K20X)

GK110
(K40)

GK210
(K80)

GM107
(GTX750)

GM204
(GTX980)

2006
/07

2008
/09 2010 2011 2012 2013 2013

/14 2014 2014
/15

2014
/15

1.0 1.3 2.0 2.1 3.0 3.5 3.5 3.7 5.0 5.2

N (multiprocs.)

M (cores/multip.)

Number of cores

16 30 16 7 8 14 15 30 5 16

8 8 32 48 192 192 192 192 128 128

128 240 512 336 1536 2688 2880 5760 640 2048

III. Programming

Comparing the GPU and the CPU

40

41

POSIX-threads in CPU
CUDA in GPU, followed by

host code in CPU
2D configuration: Grid of

2x2 blocks, 4 threads each
#define NUM_THREADS 16
void *myfun (void *threadId)
{
 int tid = (int) threadId;
 float result = sin(tid) * tan(tid);

 pthread_exit(NULL);
}

void main()
{
 int t;
 for (t=0; t<NUM_THREADS; t++)
 pthread_create(NULL,NULL,myfun,t);
 pthread_exit(NULL);
}

#define NUM_BLOCKS 1
#define BLOCKSIZE 16
__global__ void mykernel()
{
 int tid = threadIdx.x;
 float result = sin(tid) * tan(tid);
}

void main()
{
 dim3 dimGrid (NUM_BLOCKS);
 dim3 dimBlock (BLOCKSIZE);
 mykernel<<<dimGrid, dimBlock>>>();
 return EXIT_SUCCESS;
}

#define NUM_BLX 2
#define NUM_BLY 2
#define BLOCKSIZE 4
__global__ void mykernel()
{
 int bid=blockIdx.x*gridDim.y+blockIdx.y;
 int tid=bid*blockDim.x+ threadIdx.x;
 float result = sin(tid) * tan(tid);
}

void main()
{
 dim3 dimGrid (NUM_BLX, NUM_BLY);
 dim3 dimBlock(BLOCKSIZE);
 mykernel<<<dimGrid, dimBlock>>>();
 return EXIT_SUCCESS;
}

From POSIX threads in CPU
to CUDA threads in GPU The CUDA programming model

42

The GPU (device) is a highly multithreaded coprocessor
to the CPU (host):

Has its own DRAM (device memory).
Executes many threads in parallel on several multiprocessor cores.

CUDA threads are extremely lightweight.
Very little creation overhead.
Context switching is essentially free.

Programmer’s goal: Declare thousands of threads to
ensure the full utilization of hardware resources.

GPU

Multiprocessor 1 Multiprocessor 2 Multiprocessor N

Structure of a CUDA program

Each multiprocessor (SM) processes batches of blocks one
after another.

Active blocks = blocks processed by one multiprocessor in one
batch.

Active threads = all the threads from the active blocks.

Registers and shared memory within a multiprocessor are
split among the active threads. Therefore, for any given
kernel, the number of active blocks depends on:

The number of registers that the kernel requires.
How much shared memory the kernel consumes.

43

Preliminary definitions

44

 Programmers face the challenge of exposing parallelism for
thousands cores using the following elements:

 Device = GPU = Set of multiprocessors.
 Multiprocessor = Set of processors + shared memory.
 Kernel = Program ready to run on GPU.
 Grid = Array of thread blocks that execute a kernel.
 Thread block = Group of SIMD threads that:

 Execute a kernel on different data based on threadID and
blockID.

 Can communicate via shared memory.
 Warp size = 32. This is the granularity of the scheduler for

issuing threads to the execution units.

The relation between hardware and software
from a memory access perspective

45

···

· · · · · · · · ·

· · · · · · · · ·

··· ··· ···

··· ··· ···

··· ··· ···

Thread

Thread block

Grid 0

Grid 1

On-chip
memory

Memory
outside the
GPU chip
(but within the
graphics card)

Resources and limitations depending
on CUDA hardware generation (CCC)

46

CUDA Compute Capability (CCC)CUDA Compute Capability (CCC)CUDA Compute Capability (CCC)CUDA Compute Capability (CCC)CUDA Compute Capability (CCC)
Limitation Impact

1.0, 1.1 1.2, 1.3 2.0, 2.1 3.0,
3.5, 3.7 5.0, 5.2

Limitation Impact

Multiprocessors / GPU

Cores / Multiprocessor

Threads / Warp

Blocks / Multiprocessor

Threads / Block

Threads / Multiprocessor

32 bits registers / Multip.

Shared memory / Multip.

16 30 14-16 13-16 4, 5, ... Hardware Scalability

8 8 32 192 128 Hardware Scalability

32 32 32 32 32 Software Throughput

8 8 8 16 32 Software Throughput

512 512 1024 1024 1024 Software Parallelism

768 1 024 1 536 2048 2048 Software Parallelism

8K 16K 32K 64K 64K Hardware Working set

16K 16K 16K
48K

16K,
32K, 48K

64K (5.0)
96K (5.2) Hardware Working set

The CCC relation with the GPU marketplace

47

CCC Code names Models aimed
to CUDA

Commercial
series

Year
range

Manufacturing
process @ TSMC

1.0

1.1

1.2

1.3

2.0

2.1

3.0

3.5

3.7

5.0

5.2

G80 Many 8xxx 2006-07 90 nm.

G84,6 G92,4,6,8 Many 8xxx/9xxx 2007-09 80, 65, 55 nm.

GT215,6,8 Few 2xx 2009-10 40 nm.

GT200 Many 2xx 2008-09 65, 55 nm.

GF100, GF110 Huge 4xx/5xx 2010-11 40 nm.

GF104,6,8, GF114,6,8,9 Few 4xx/5xx/7xx 2010-13 40 nm.

GK104,6,7 Some 6xx/7xx 2012-14 28 nm.

GK110, GK208 Huge 6xx/7xx/Titan 2013-14 28 nm.

GK210 (2xGK110) Very few Titan 2014 28 nm.

GM107,8 Many 7xx 2014-15 28 nm.

GM200,4,6 Many 9xx/Titan 2014-15 28 nm.

GPU threads and blocks

Threads are assigned to multiprocessors in blocks, and to
cores via warps, which is the scheduling unit (32 threads).

Threads of a block share information via shared memory,
and can synchronize via syncthreads() calls. 48

· · · ·

Blocks are
assigned to

multiprocessors

[Kepler’s limit: 16
concurrent blocks

per multiprocessor] Block 0 Block 1 Block 2

Grid 0 [Kepler’s limit: 4G blocks per grid]

Kepler’s limits: 1024 threads per block, 2048 threads per multiprocessor

Playing with parallel constrainsts
in Maxwell to maximize concurrency

 Limits within a multiprocessor: [1] 32 concurrent blocks,
[2] 1024 threads/block and [3] 2048 threads total.

 1 block of 2048 threads. Forbidden by [2].
 2 blocks of 1024 threads. Feasible on the same multiproc.
 4 blocks of 512 threads. Feasible on the same multiproc.
 4 blocks of 1024 threads. Forbidden by [3] on the same

multiprocessor, feasible involving two multiprocessors.
 8 blocks of 256 threads. Feasible on the same multiproc.
 256 blocks of 8 threads. Forbidden by [1] on the same

multiprocessor, feasible involving 8 multiprocessors.

49

GPU memory: Scope and location

Threads within a block can use the shared memory to perform
tasks in a more cooperative and faster manner.

Global memory is the only visible to threads, blocks and kernels.
50

Local memory: Off-chip

Blocks to share
the same

multiprocessor
if memory

constraints are
fulfilled

· · · ·

C
on

st
an

t
an

d
te

xt
ur

e
m

em
or

y
al

so
 a

va
ila

bl
e

Block 0 Block 1 Block 2

Grid 0

Global memory: DRAM (GDDR5)

Shared memory

RF RF RF RF RF RF RF RF

LM LM LM LM LM LM LM LM

Legend: RF = Register file. LM = Local Memory
GPU memory: On-chip Off-chip

Playing with memory constraints in Maxwell
(CCC 5.2) to maximize the use of resources

 Limits within a multiprocessor (SMX): 64 Kregs. and 96
KB. of shared memory. That way:

 To allow a second block to execute on the same multiprocessor,
each block must use at most 32 Kregs. and 48 KB of shared memory.

 To allow a third block to execute on the same multiprocessor,
each block must use at most 21.3 Kregs. and 32 KB. of shared mem.

 ... and so on. In general, the less memory used, the more
concurrency for blocks execution.

 There is a trade-off between memory and parallelism!

51

Think small:
1D partitioning on a 64 elements vector

52

Remember: Use finest grained parallelism (assign one
data to each thread). Threads and blocks deployment:

 8 blocks of 8 threads each. Risk on smaller blocks: Waste
parallelism if the limit of 8-16 blocks per multip. is reached.

 4 blocks of 16 threads each. Risk on larger blocks:
Squeeze the working set for each thread (remember that
shared memory and register file are shared by all threads).

Now think big:
1D partitioning on a 64 million elems. array

Maximum number of threads per block:
 1024 on Fermi, Kepler and Maxwell.

Maximum number of blocks:
 64K on Fermi.
 4G on Kepler and Maxwell.

Larger sizes for data structures can only be covered with a
huge number of blocks (keeping fine-grained parallelism).

 Choices:
 64K blocks of 1K threads each.
 128K blocks of 512 threads each (not feasible in Fermi).
 256K blocks of 256 threads each (not feasible in Fermi).
 ... and so on. 53

Summarizing about kernels,
blocks, threads and parallelism

54

Kernels are launched in grids.
Each block executes fully on a

single multiprocessor (SMX/SMM).
Does not migrate.

Several blocks can reside
concurrently on one SMX/SMM.

With control limitations. For
example, in Kepler/Maxwell, we have:

Up to 16/32 concurrent blocks.
Up to 1024 threads per block.
Up to 2048 threads per SMX/SMM.

But usually, tighter limitations arise
due to shared use of the register file and
shared memory among all threads (as
we have seen 3 slides ago).

Grid
Block (0, 0)

Shared memory

Thread
(0, 0)

Regs Regs

Block (1, 0)

Shared memory

Thread
 (0, 0)

Regs

Thread
 (1, 0)

Regs

Global memory

Thread
(1, 0)

Partition¡ng data and computations

55

A block is a batch of threads
which can cooperate by:

Sharing data via shared memory.
Synchronizing their execution for

hazard-free memory accesses.

A kernel is executed as a 1D
or 2D grid of 1D, 2D or 3D of
thread blocks.

Multidimensional IDs are very
convenient when addressing
multidimensional arrays, for each
thread has to bound its area/
volume of local computation.

CPU (host)

Kernel 1

Kernel 2

GPU (device)

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block(
2, 1)

Grid 2

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

Memory spaces

The CPU and the GPU have separated memory spaces:
To communicate them, we use the PCI express bus.
The GPU uses specific functions to allocate memory and copy data

from CPU in a similar manner to what we are used with the C
language (malloc/free).

Pointers are only addresses:
You cannot derive from a pointer value if the address belongs to

either the CPU or the GPU space.
You have to be very careful when handling pointers, as the program

usually crashes when a CPU data attemps to be accessed from GPU
and vice versa (with the introduction of unified memory, this
situation changes from CUDA 6.0 on).

56

IV. Syntax

CUDA is C with some extra keywords.
A preliminar example

58

void saxpy_serial(int n, float a, float *x, float *y)
{
 for (int i = 0; i < n; ++i)
 y[i] = a*x[i] + y[i];
}
// Invoke the SAXPY function sequentially
saxpy_serial(n, 2.0, x, y);

__global__ void saxpy_parallel(int n, float a, float *x,
float *y)
{ // More on parallel access patterns later in example 2
 int i = blockIdx.x*blockDim.x + threadIdx.x;
 if (i < n) y[i] = a*x[i] + y[i];
}
// Invoke SAXPY in parallel with 256 threads/block
int nblocks = (n + 255) / 256;
saxpy_parallel<<<nblocks, 256>>>(n, 2.0, x, y);

C code on the CPU

Equivalent CUDA code for its parallel execution on GPUs:

List of extensions added to the C language

Type qualifiers:
global, device, shared, local, constant.

Keywords:
threadIdx, blockIdx, gridDim, blockDim.

Intrinsics:
__syncthreads();

Runtime API:
Memory, symbols, execution

management.

Kernel functions to launch code to
the GPU from the CPU.

59

__device__ float array[N];

__global__ void med_filter(float *image) {

 __shared__ float region[M];
 ...

 region[threadIdx.x] = image[i];

__syncthreads();
 ...
 image[j] = result;
}

// Allocate memory in the GPU
void *myimage;
cudaMalloc(&myimage, bytes);

// 100 thread blocks, 10 threads per block
convolve<<<100, 10>>> (myimage);

Interaction between CPU and GPU

60

CUDA extends the C language with a new type of function,
kernel, which executes code in parallel on all active threads
within GPU. Remaining code is native C executed on CPU.

The typical main() of C combines the sequential execution
on CPU and the parallel execution on GPU of CUDA kernels.

A kernel is launched in an asynchronous way, that is, control
always returns immediately to the CPU.

Each GPU kernel has an implicit barrier when it ends, that is,
it does not conclude until all its threads are over.

We can exploit the CPU-GPU biprocessor by interleaving code
with a similar workload on both.

61

__global__ kernelA(){···}
__global__ kernelB(){···}
int main()
···
kernelA <<< dimGridA, dimBlockA >>> (params.);
···
kernelB <<< dimGridB, dimBlockB >>> (params.);
···

GPU

CPU

GPU

E
x
e
cu

ti
o

n

CPU

CPU

A kernel does not start until all previous kernels are over.
Streams allow you to run kernels in parallel.

Interaction between CPU and GPU (cont.) Data partition for a 2D matrix (say an image)
[for a parallel access pattern, see example 2]

62

Image width

Im
ag

e
he

ig
ht

Block (0, 0)
Thread (0,0) Thread (1,0) (blockDim.x-1,0)

(0,blockDim.y-1) (1,blockDim.y-1)
(blockDim.x-1,
 blockDim.y-1)

Block ((gridDim.x)-1, 0)
Thread (0,0) Thread (1,0) (blockDim.x-1,0)

(0,blockDim.y-1) (1,blockDim.y-1)
(blockDim.x-1,
 blockDim.y-1)

Block (0, (gridDim.y)-1)
Thread (0,0) Thread (1,0) (blockDim.x-1,0)

(0,blockDim.y-1) (1,blockDim.y-1)
(blockDim.x-1,
 blockDim.y-1)

Block ((gridDim.x)-1, (gridDim.y)-1)
Thread (0,0) Thread (1,0) (blockDim.x-1,0)

(0,blockDim.y-1) (1,blockDim.y-1)
(blockDim.x-1,
 blockDim.y-1)

The (hor,ver) position for
the block within the grid is
(blockIdx.x, blockIdx.y).
The (hor,ver) position for
the thread within the block
is(threadIdx.x, threadIdx.y).

For a grid of 16x16 blocks
of 8x8 threads, each
responsible of 4x4 data:

For this thread:
- blockIdx.x is (gridDim.x)-1, that is, 15.
- blockIdx.y is 0.
- threadIdx.x is 1.
- threadIdx.y is 0.

This pixel is in the column:
[blockIdx.x * blockDim.x * 4] +
(threadIdx.x * 4) + 2, that is,
[15 * 8 * 4] + (1 * 4) + 2 = 486.
And in the row:
[blockIdx.y * blockDim.y * 4] +
(threadIdx.y * 4) + 1 = 0 + 0 + 1 = 1.

63

Modifiers for the functions executed on GPU:
__global__ void MyKernel() { } // Invoked by the CPU
__device__ float MyFunc() { } // Invoked by the GPU

Modifiers for the variables within GPU:
__shared__ float MySharedArray[32]; // In shared mem.
__constant__ float MyConstantArray[32];

Configuration for the execution to launch kernels:
dim2 gridDim(100,50); // 5000 thread blocks
dim3 blockDim(4,8,8); // 256 threads per blocks
MyKernel <<< gridDim,blockDim >>> (pars.); // Launch
Note: We can see an optional third parameter here to

indicate as a hint the amount of shared memory
allocated dynamically by the kernel during its
execution.

Modifiers for the functions and
launching executions on GPU Intrinsics

Programmer has to choose the block size and the number
of blocks to exploit the maximum amount of parallelism for
the code during its execution.

64

dim3 gridDim; // Grid dimension: Number of blocks on each dim.

dim3 blockDim; // Block dimension: Block size on each dim.

uint3 blockIdx; // Index to the block within the mesh

uint3 threadIdx; // Index to the thread in the block

void __syncthreads(); // Explicit synchronization

Functions to query at runtime
the hardware resources we count on

Each GPU available at hardware level receives an integer
tag which identifies it, starting in 0.

To know the number of GPUs available:
cudaGetDeviceCount(int* count);

To know the resources available on GPU dev (cache,
registers, clock frequency, ...):

cudaGetDeviceProperties(struct cudaDeviceProp* prop, int dev);

To know the GPU that better meets certain requirements:
cudaChooseDevice(int* dev, const struct cudaDeviceProp* prop);

To select a particular GPU:
cudaSetDevice(int dev);

To know in which GPU we are executing the code:
cudaGetDevice(int* dev);

65

The output of cudaGetDeviceProperties

This is exactly the output you get from the “DeviceQuery”
code in the CUDA SDK.

66

Managing video memory before CUDA 6.0

To allocate and free GPU memory:
cudaMalloc(pointer, size)
cudaFree(pointer)

To move memory areas between CPU and GPU:
On the CPU side, we declare malloc(h_A).
Also on the GPU side, we declare cudaMalloc(d_A).
And once this is done, we can:

Transfer data from the CPU to the GPU:
cudaMemcpy(d_A, h_A, numBytes, cudaMemcpyHostToDevice);

Transfer data from the GPU to the CPU:
cudaMemcpy(h_A, d_A, numBytes, cudaMemcpyDeviceToHost);

Prefix “h_” useful in practice as a tag for “host memory pointer”.

Prefix “d_” also useful as a tag for “device (video) memory”.
67

Managing video memory from CUDA 6.0 on

Simpler programming and memory model:
Single pointer to data, accessible anywhere.
Eliminate need for cudaMemcpy().
Greatly simplifies code porting.

Performance through data locality:
Migrate data to accessing processor.
Guarantee global coherency.
Still allows cudaMemcpyAsync() hand tuning.

68

Additions to the CUDA API

New call: cudaMallocManaged(pointer,size,flag)
Drop-in replacement for cudaMalloc(pointer,size).
The flag indicates who shares the pointer with the device:
cudaMemAttachHost: Only the CPU.
cudaMemAttachGlobal: Any other GPU too.

All operations valid on device mem. are also ok on managed mem.

New keyword: __managed__
Global variable annotation combines with __device__.
Declares global-scope migratable device variable.
Symbol accessible from both GPU and CPU code.

New call: cudaStreamAttachMemAsync()
Manages concurrently in multi-threaded CPU applications.

69

IV. 2. Preliminary examples

Example 1: What your code has to do

Allocate N integers in CPU memory.
Allocate N integers in GPU memory.
Initialize GPU memory to zero.
Copy values from GPU to CPU.
Print values.

71

Example 1: Solution
[C code in red, CUDA extensions in blue]

72

int main()
{
 int N = 16;
 int num_bytes = N*sizeof(int);
 int *d_a=0, *h_a=0; // Pointers in device (GPU) and host (CPU)

 h_a = (int*) malloc(num_bytes);
 cudaMalloc((void**)&d_a, num_bytes);

 if(0==h_a || 0==d_a) printf("I couldn’t allocate memory\n");

 cudaMemset(d_a, 0, num_bytes);
 cudaMemcpy(h_a, d_a, num_bytes, cudaMemcpyDeviceToHost);

 for (int i=0; i<N; i++) printf("%d ", h_a[i]);

 free(h_a);
 cudaFree(d_a);
}

Asynchronous memory transfers

cudaMemcpy() calls are synchronous, that is:
They do not start until all previous CUDA calls have finalized.
The return to the CPU does not take place until we have performed

the actual copy in memory.

From CUDA Compute Capabilities 1.2 on, it is possible to
use the cudaMemcpyAsync() variant, which introduces
the following differences:

The return to the CPU is immediate.
We can overlap computation and communication.

73 74

The C program.
This file is compiled with gcc

The CUDA kernel running on GPU
followed by host code running on CPU.

This file is compiled with nvcc

void increment_cpu(float *a, float b, int N)
{
 for (int idx = 0; idx<N; idx++)
 a[idx] = a[idx] + b;
}

void main()
{

 increment_cpu(a, b, N);
}

__global__ void increment_gpu(float *a, float b, int N)
{
 int idx = blockIdx.x * blockDim.x + threadIdx.x;
 if (idx < N)
 a[idx] = a[idx] + b;
}

void main()
{
 …..
 dim3 dimBlock (blocksize);
 dim3 dimGrid (ceil(N/(float)blocksize));
 increment_gpu<<<dimGrid, dimBlock>>>(a, b, N);
}

Example 2: Increment a scalar value “b”
to the N elements of an array

75

Say N=16 and blockDim=4. Then we have 4 thread blocks,
and each thread computes a single element of the vector.
This is what we want: fine-grained parallelism for the GPU.

blockIdx.x = 0
blockDim.x = 4
threadIdx.x = 0,1,2,3
idx = 0,1,2,3

blockIdx.x = 1
blockDim.x = 4
threadIdx.x = 0,1,2,3
idx = 4,5,6,7

blockIdx.x = 2
blockDim.x = 4
threadIdx.x = 0,1,2,3
idx = 8,9,10,11

blockIdx.x = 3
blockDim.x = 4
threadIdx.x = 0,1,2,3
idx = 12,13,14,15

int idx = (blockIdx.x * blockDim.x) + threadIdx.x;
It will map from local index threadIdx.x to global index
Warning: blockDim.x should be >= 32 (warp size), this is just an example

Same access
pattern for all
threads

La
ng

ua
ge

ex

te
ns

io
ns

Example 2: Increment a scalar “b”
to the N elements of a vector

76

// Reserve memory on the CPU
unsigned int numBytes = N * sizeof(float);
float* h_A = (float*) malloc(numBytes);

// Reserve memory on the GPU
float* d_A = 0; cudaMalloc(&d_A, numbytes);

// Copy data from CPU to GPU
cudaMemcpy(d_A, h_A, numBytes, cudaMemcpyHostToDevice);

// Execute CUDA kernel with a number of blocks and block size
increment_gpu <<< N/blockSize, blockSize >>> (d_A, b);

// Copy data back to the CPU
cudaMemcpy(h_A, d_A, numBytes, cudaMemcpyDeviceToHost);

// Free video memory
cudaFree(d_A);

More details for the CPU code of example 2
[red for C, green for variables, blue for CUDA]

77

CUDA code
WITHOUT unified memory

CUDA code (from 6.0 on)
WITH unified memory

__global__ void incr (float *a, float b, int N)
{
 int idx = blockIdx.x * blockDim.x + threadIdx.x;
 if (idx < N)
 a[idx] = a[idx] + b;
}
void main()
{
 unsigned int numBytes = N*sizeof(float);
 float* h_A = (float*) malloc(numBytes);
 float* d_A; cudaMalloc(&d_A, numBytes);
 cudaMemcpy(d_A,h_A,numBytes,cudaMemcpyHostToDevice);
 incr<<<N/blocksize,blocksize>>>(d_A,b,N);
 cudaMemcpy(h_A,d_A,numBytes,cudaMemcpyDeviceToHost);
 cudaFree(d_A);
 free(h_A);
}

__global__ void incr (float *a, float b, int N)
{
 int idx = blockIdx.x * blockDim.x + threadIdx.x;
 if (idx < N)
 a[idx] = a[idx] + b;
}
void main()
{

 float* m_A; cudaMallocManaged(&m_A, numBytes);

 incr<<<N/blocksize,blocksize>>>(m_A,b,N);
 cudaDeviceSynchronize();

 cudaFree(m_A);
}

Example 2: Increment a value “b”
to all the N elements of an array “a”

V. Programming kernels: VectorAdd,
Stencil, ReverseArray, MxM

79

1. Identify those parts with a good potential to run in
parallel exploiting SIMD data parallelism.

2. Identify all data necessary for the computations.
3. Move data to the GPU.
4. Call to the computational kernel.
5. Establish the required CPU-GPU synchronization.
6. Transfer results from GPU back to CPU.
7. Integrate the GPU results into CPU variables.

Step for building the CUDA source code Coordinated efforts in parallel are required

Parallelism is given by blocks and threads.
Threads within each block may require an explicit

synchronization, as only within a warp it is guaranteed its
joint evolution (SIMD). Example:

80

a[i] = b[i] + 7;
syncthreads();
x[i] = a[i-1]; // The warp 1 reads here the value of a[31],
 // which should have been written by warp 0 BEFORE

Kernel borders place implicit barriers:
Kernel1 <<<nblocks,nthreads>>> (a,b,c);
Kernel2 <<<nblocks,nthreads>>> (a,b);

Blocks can coordinate using atomic operations:
Example: Increment a counter atomicInc();

V. 1. Adding two vectors

The required code for the GPU kernel
and its invocation from the CPU side

The __global__ prefix indicates that vecAdd() will
execute on device (GPU) and will be called from host (CPU).
A, B and C are pointers to device memory, so we need to:

Allocate/free memory on GPU, using cudaMalloc()/cudaFree().
These pointers cannot be dereferenced in host code.

82

// Add two vectors of size N: C[1..N] = A[1..N] + B[1..N]
// Each thread calculates a single component of the output vector
__global__ void vecAdd(float* A, float* B, float* C) {
! int tid = threadIdx.x + (blockDim.x* blockIdx.x);
! C[tid] = A[tid] + B[tid];
}

GPU code

int main() { // Launch N/256 blocks of 256 threads each
! vecAdd<<< N/256, 256>>>(d_A, d_B, d_C);
} CPU code

83

unsigned int numBytes = N * sizeof(float);
// Allocates CPU memory
float* h_A = (float*) malloc(numBytes);
float* h_B = (float*) malloc(numBytes);
... initializes h_A and h_B ...
// Allocates GPU memory
float* d_A = 0; cudaMalloc((void**)&d_A, numBytes);
float* d_B = 0; cudaMalloc((void**)&d_B, numBytes);
float* d_C = 0; cudaMalloc((void**)&d_C, numBytes);
// Copy input data from CPU into GPU
cudaMemcpy(d_A, h_A, numBytes, cudaMemcpyHostToDevice);
cudaMemcpy(d_B, h_B, numBytes, cudaMemcpyHostToDevice);
... CALL TO THE VecAdd KERNEL IN THE PREVIOUS SLIDE HERE...
// Copy results from GPU back to CPU
float* h_C = (float*) malloc(numBytes);
cudaMemcpy(h_C, d_C, numBytes, cudaMemcpyDeviceToHost);
// Free video memory
cudaFree(d_A); cudaFree(d_B); cudaFree(d_C);

CPU code to handle memory
and gather results from the GPU

Running in parallel
(regardless of hardware generation)

vecAdd <<< 1, 1 >>>
() Executes 1 block composed
of 1 thread - no parallelism.
vecAdd <<< B, 1 >>>

() Executes B blocks
composed on 1 thread. Inter-
multiprocessor parallelism.
vecAdd <<< B, M >>>

() Executes B blocks
composed of M threads each.
Inter- and intra-multiprocessor
parallelism.

84

GPU
Multiprocessor N

Multiprocessor 2
Multiprocessor 1

Global memory

Shared memory

Core 1

Registers

…Core 2

Registers

Core M

Registers

Texture cache

(scalability in 2nd gener.)

(scalability in 3rd gener.)

With M threads per block, a unique index is given by:
tid = threadIdx.x+ blockDim.x* blockIdx.x;

Consider indexing an array of one element per thread
(because we are interested in fine-grained parallelism), B=4
blocks of M=8 threads each:

Which thread will compute the 22nd element of the array?
gridDim.x is 4. blockDim.x is 8. blockIdx.x = 2. threadIdx.x = 5.
tid = 5 + (8 * 2) = 21 (we start from 0, so this is the 22nd element).

Indexing arrays with blocks and threads

85

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6
threadIdx.x threadIdx.x threadIdx.x threadIdx.x

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

7

Handling arbitrary vector sizes

Typical problems are not friendly multiples of blockDim.x,
so we have to prevent accessing beyond the end of arrays:

And now, update the kernel launch to include the
"incomplete" block of threads:

86

// Add two vectors of size N: C[1..N] = A[1..N] + B[1..N]
__global__ void vecAdd(float* A, float* B, float* C, N) {

int tid = threadIdx.x + (blockDim.x * blockIdx.x);
if (tid < N)
 C[tid] = A[tid] + B[tid];

}

! vecAdd<<< (N + M-1)/256, 256>>>(d_A, d_B, d_C, N);

V. 2. Stencil kernels

Rationale

Looking at the previous example, threads add a level of
complexity without contributing with new features.

However, unlike parallel blocks, threads can:
Communicate (via shared memory).
Synchronize (for example, to preserve data dependencies).

We need a more sophisticated example to illustrate all
this...

88

1D Stencil

Consider applying a 1D stencil to a 1D array of elements.
Each output element is the sum of input elements within a radius.

If radius is 3, then each output element is the sum of 7
input elements:

Again, we apply fine-grained parallelism for each thread to
process a single output element.

Input elements are read several times:
With radius 3, each input element is read seven times.

89

radius radius

Sharing data between threads. Advantages

Threads within a block can share data via shared memory.
Shared memory is user-managed: Declare with __shared__ prefix.
Data is allocated per block.
Shared memory is extremely fast:

500 times faster than global memory (video memory - GDDR5). The difference is
technology: static (built with transistors) versus dynamic (capacitors).

Programmer can see it like an extension of the register file.

Shared memory is more versatile than registers:
Registers are private to each thread, shared memory is private to each block.

90

Sharing data between threads. Limitations

Shared memory and registers usage limit parallelism.
If we leave room for a second block, register file and shared

memory are partitioned (even though blocks do not execute
simultaneously, context switch is immediate).

Examples for Kepler were shown before (for a max. of 64K
registers and 48 Kbytes of shared memory per multiproc.):

To allocate two blocks per multiprocessor: The block cannot use
more than 32 Kregisters and 24 Kbytes of shared memory.

To allocate three blocks per multiprocessor: The block cannot use
more than 21.3 Kregisters and 16 Kbytes of shared memory.

To allocate four blocks per multiprocessor: The block cannot use
more than 16 Kregisters and 12 Kbytes of shared memory.

... and so on. Use the CUDA Occupancy Calculator to figure it out.
91

Steps to cache data in shared memory:
Read (blockDim.x + 2 * radius) input elements from global

memory to shared memory.
Compute blockDim.x output elements.
Write blockDim.x output elements to global memory.

Each block needs a halo of radius elements at each
boundary.

Using Shared Memory

92

blockDim.x output elements

halo on left halo on right

Stencil kernel

93

__global__ void stencil_1d(int *d_in, int *d_out)
{
 __shared__ int temp[BLOCKSIZE + 2 * RADIUS];
 int gindex = threadIdx.x
 + blockIdx.x * blockDim.x;
 int lindex = threadIdx.x + RADIUS;

 // Read input elements into shared memory
 temp[lindex] = d_in[gindex];
 if (threadIdx.x < RADIUS) {
 temp[lindex-RADIUS] = d_in[gindex-RADIUS];
 temp[lindex+blockDim.x]=d_in[gindex+blockDim.x];
 }

 // Apply the stencil
 int result = 0;
 for (int offset=-RADIUS; offset<=RADIUS; offset++)
 result += temp[lindex + offset];

 // Store the result
 d_out[gindex] = result;
}

But we have to prevent race
conditions. For example, last
thread reads the halo before
first thread (from a different
warp) has fetched it.
Synchronization among
threads is required!

Threads synchronization

Use __syncthreads() to synchronize all threads within
a block:

All threads must reach the barrier before progressing.
This can be used to prevent RAW / WAR / WAW hazards.
In conditional code, the condition must be uniform across the block.

94

__global__ void stencil_1d(...)
{
 < Declare variables and indices >
 < Read input elements into shared memory >

 __syncthreads();

 < Apply the stencil >
 < Store the result >
}

Summary of major concepts
applied during this example

Launch N blocks with M threads per block to execute threads
in parallel. Use:

kernel <<< N, M >>> ();

Access block index within grid and thread index within block:
blockIdx.x and threadIdx.x;

Calculate global indices where each thread has to work
depending on data partitioning. Use:

int index = threadIdx.x + blockIdx.x * blockDim.x;

Declare a variable/array in shared memory. Use:
__shared__ (as prefix to the data type).

Synchronize threads to prevent data hazards. Use:
__syncthreads();

95

V. 3. Reversing the order
of a vector of elements

GPU code for the ReverseArray kernel
(1) using a single block

97

__global__ void reverseArray(int *in, int *out) {
 int index_in = threadIdx.x;
 int index_out = blockDim.x – 1 – threadIdx.x;

 // Reverse array contents using a single block
 out[index_out] = in[index_in];
}

It is a naive solution which does not aspire to apply
massive parallelism. The maximum block size is 1024
threads, so that is the largest vector that this code would
accept as input.

GPU code for the ReverseArray kernel
(2) using multiple blocks

98

__global__ void reverseArray(int *in, int *out) { // For thread 0 within block 0:
 int in_offset = blockIdx.x * blockDim.x; // in_offset = 0;
 int out_offset = (gridDim.x – 1 – blockIdx.x) * blockDim.x; // out_offset = 12;
 int index_in = in_offset + threadIdx.x; // index_in = 0;
 int index_out = out_offset + (blockDim.x – 1 – threadIdx.x); // index_out = 15;

 // Reverse contents in chunks of whole blocks
 out[index_out] = in[index_in];
}

For an example of 4 blocks, each composed of 4 threads:

A more sophisticated version
using shared memory

99

GPU code for the ReverseArray kernel
(3) using multiple blocks and shared memory

100

__global__ void reverseArray(int *in, int *out) {
 __shared__ int temp[BLOCK_SIZE];
 int gindex = threadIdx.x + blockIdx.x * blockDim.x;
 int lindex = threadIdx.x;

 temp[lindex] = in[gindex]; // Load the input vector into shared memory
 syncthreads(); // (i1)
 temp[lindex] = temp[blockDim.x-lindex-1]; // Reverse local arrays within blocks (i2)
 syncthreads(); // (i3)
 // Reverse contents in chunks of whole blocks (i4)
 out[threadIdx.x + (((N/blockDim.x)-blockIdx.x-1) * blockDim.x)] = temp[lindex];
}

Dependency: In (i2), values written by a warp, have to be read (before) by another warp.

Solution: Use a temp2[BLOCK_SIZE] array to store intermediate results (also in (i4)).

Improvement: (i3) is not required. Also, if you swap indices within temp[] and temp2[]
in (i2), then (i1) is not required (but (i3) becomes mandatory).

If you substitute all temp and temp2 instances by their equivalent expressions, you
converge into the previous CUDA version.

Every array element is accessed once, so using shared memory does not improve anyway!

V. 4. Matrix product

void MxMonCPU(float* A, float* B, float* C, int N);
{
 for (int i=0; i<N; i++)
 for (int j=0; j<N; j++)
 {
 float sum=0;
 for (int k=0; k<N; k++)
 {
 float a = A[i*N + k];
 float b = B[k*N + j];
 sum += a*b;
 }
 C[i*N + j] = sum;
 }
}

Typical CPU code written in C language

 C = A * B. (P = M * N in hands-on)
 All square matrices of size N * N.
 Matrices are serialized into vectors to

simplify dynamic memory allocation.

102

A

B

C

N

N N

void MxMonGPU(float* A, float* B, float* C, int N);
{
 float sum=0;
 int i, j;
 i = threadIdx.x + blockIdx.x * blockDim.x;
 j = threadIdx.y + blockIdx.y * blockDim.y;
 for (int k=0; k<N; k++)
 {
 float a = A[i*N + k];
 float b = B[k*N + j];
 sum += a*b;
 }
 C[i*N + j] = sum;
}

CUDA version for the matrix product:
A draft for the parallel code

103

A

B

C

N

N N
104

 Each thread computes a single element of C.
Matrices A and B are loaded N times from video memory.

 Blocks accomodate threads in groups of 1024 threads
(internal CUDA constraint in Fermi and Kepler). That way,
we may use 2D blocks composed of 32x32 threads each.

N
N

N N

X=C(x, y)

WidthA

HeightA

WidthB

HeightA

WidthB

C A B
· · · · · · · · · · · · · · ·

· · · · · · ·
· · · ·

· · · ·
· · · · · ·

· · · ·

· · · ·
· · · · · ·

· · · · · · ·
· · · ·

· · · ·
· · · · · ·

· · · ·

· · · ·
· · · · · ·

Grid
Block

Th(x,y)

CUDA version for the matrix product:
Explaining parallelization

dim2 dimBlock(BLOCKSIZE, BLOCKSIZE);
dim2 dimGrid(WidthB/BLOCKSIZE, HeightA/BLOCKSIZE);
...
MxMonGPU <<<dimGrid,dimBlock>>> (A, B, C, N);

CUDA version for the matrix product:
Analysis

105

 Each thread requires 10 registers, so we can reach the
maximum amount of parallelism in Kepler:

2 blocks of 1024 threads (32x32) on each SMX. (2x1024x10 = 20480
registers, which is lower than 65536 registers available).

 Problems:
Low arithmetic intensity.
Demanding on memory bandwidth, which becomes the bottleneck.

 Solution:
Use shared memory on each multiprocessor.

106

 The 32x32 submatrix Csub computed by
each thread block uses tiles of 32x32
elements of A and B which are repeatedly
allocated on shared memory.

 A and B are loaded only (N/32) times
from global memory.

 Achievements:
Less demanding on

memory bandwidth.
More arithmetic intensity.

A

B

C

Csub

MM M M

M
M

M
M

N
N

N N

Using shared memory:
Version with tiling for A and B

Tiling: Implementation details

 We have to manage all tiles involved within a thread block:
Load in parallel (all threads contribute) the input tiles (A and B) from

global memory into shared memory. Tiles reuse the shared memory space.
 __syncthreads() (to make sure we have loaded matrices before

starting the computation).
Compute all products and sums for C using tiles within shared memory.

Each thread can now iterate independently on tile elements.

 __syncthreads() (to make sure that the computation with the tile is
over before loading, in the same memory space within share memory, two
new tiles of A and B in the next iteration).

107

A trick to avoid shared memory bank conflicts

 Rationale:
The shared memory is structured into 16 (pre-Fermi) or 32 banks.
Threads within a block are numbered in column major order, that is,

the x dimension is the fastest varying.

 When using the regular indexing scheme to shared
memory arrays: As[threadIdx.x][threadIdx.y],
threads within a half-warp will be reading from the same
column, that is, from the same bank in shared memory.

 However, using As[threadIdx.y][threadIdx.x],
threads within a half-warp will be reading from the same row,
which implies reading from a different bank each.

 So, tiles store/access data transposed in shared memory.
108

An example for solving conflicts
to banks in shared memory

109

(31,31)

(0,0) (31,0)

(0,31) (31,31)

Block (0,0)

(1,0)

(1,31)

warp 0
(0,1) (31,1)(1,1) warp 1
(0,2) (31,2)(1,2) warp 2

warp 31
(0,30) (31,30)(1,30) warp 30
(0,29) (31,29)(1,29) warp 29

(0,0) (31,0)

(0,31) (31,31)

Block (1,0)

(1,0)

(1,31)

warp 0
(0,1) (31,1)(1,1) warp 1
(0,2) (31,2)(1,2) warp 2

warp 31
(0,30) (31,30)(1,30) warp 30
(0,29) (31,29)(1,29) warp 29

(0,0) (31,0)

(0,31) (31,31)

Block (0,1)

(1,0)

(1,31)

warp 0
(0,1) (31,1)(1,1) warp 1
(0,2) (31,2)(1,2) warp 2

warp 31
(0,30) (31,30)(1,30) warp 30
(0,29) (31,29)(1,29) warp 29

(0,0) (31,0)

(0,31)

Block (1,1)

(1,0)

(1,31)

warp 0
(0,1) (31,1)(1,1) warp 1
(0,2) (31,2)(1,2) warp 2

warp 31
(0,30) (31,30)(1,30) warp 30
(0,29) (31,29)(1,29) warp 29

Consecutive threads within a warp
differ in the first dimension.

but consecutive positions of memory
store data of a bidimensional matrix
which differ in the second dimension:
a[0][0], a[0][1], a[0][2], ...

data
It is

stored
in bank

If thread (x,y)
uses a[x][y],

warp access to

If thread (x,y)
uses a[y][x],

warp access to

a[0][0] 0 X X
a[0][1] 1 X
a[0][31] 31 X
a[1][0] 0 X
a[31][0] 0 X

 100%
conflicts

 No
conflicts

 ...
... (más bloques de 32 x 32 hilos)

Tiling: The CUDA code for the GPU kernel

110

__global__ void MxMonGPU(float *A, float *B, float *C, int N)
{
 int sum=0, tx, ty, i, j;
 tx = threadIdx.x; ty = threadIdx.y;
 i = tx + blockIdx.x * blockDim.x; j = ty + blockIdx.y * blockDim.y;
 __shared__ float As[32][32], float Bs[32][32];

 // Traverse tiles of A and B required to compute the block submatrix for C
 for (int tile=0; tile<(N/32); tile++)
 {
 // Load tiles (32x32) from A and B in parallel (and store them transposed)
 As[ty][tx]= A[(i*N) + (ty+(tile*32))];
 Bs[ty][tx]= B[((tx+(tile*32))*N) + j];
 __syncthreads();
 // Compute results for the submatrix of C
 for (int k=0; k<32; k++) // Data have to be read from tiles transposed too
 sum += As[k][tx] * Bs[ty][k];
 __syncthreads();
 }
 // Write all results for the block in parallel
 C[i*N+j] = sum;
}

A compiler optimization: Loop unrolling

111

Without loop unrolling: Unrolling the loop:

 ...
 __syncthreads();

 // Compute the tile
 for (k=0; k<32; k++)
 sum += As[tx][k]*Bs[k][ty];

 __syncthreads();
}
C[indexC] = sum;

 __syncthreads();

 // Compute the tile
 sum += As[tx][0]*Bs[0][ty];
 sum += As[tx][1]*Bs[1][ty];
 sum += As[tx][2]*Bs[2][ty];
 sum += As[tx][3]*Bs[3][ty];
 sum += As[tx][4]*Bs[4][ty];
 sum += As[tx][5]*Bs[5][ty];
 sum += As[tx][6]*Bs[6][ty];
 sum += As[tx][7]*Bs[7][ty];
 sum += As[tx][8]*Bs[8][ty];
 ···
 sum += As[tx][31]*Bs[31][ty];
 __syncthreads();
}
C[indexC] = sum;

112

0

25

50

75

100

G
FLO

PS

4x4 8x8 12x12 16x16

Tile size (32x32 unfeasible on G80 hardware)

Tiling only
Tiling & Unrolling

Performance on the G80 for tiling & unrolling

VI. Bibliography and tools

CUDA Zone:
The root Web for CUDA programmers

[developer.nvidia.com/cuda-zone]

114

115 116

117 118

119

CUDA books: From 2007 to 2015

 GPU Gems series: 1, 2, 3 [developer.nvidia.com/gpugems]
 List of CUDA books in [developer.nvidia.com/suggested-reading]

120

Sep'07 Feb'10 Jul'10 Abr'11 Oct'11

Nov'11 Dic'12 Jun'13 Oct'13 Sep'14

Guides for developers and more documents

Getting started with CUDA C: Programmers guide.
[docs.nvidia.com/cuda/cuda-c-programming-guide]

For tough programmers: The best practices guide.
[docs.nvidia.com/cuda/cuda-c-best-practices-guide]

The root web collecting all CUDA-related documents:
[docs.nvidia.com/cuda]

where we can find, additional guides for:
Installing CUDA on Linux, MacOS and Windows.
Optimize and improve CUDA programs on Kepler and Maxwell GPUs.
Check the CUDA API syntax (runtime, driver and math).
Learn to use libraries like cuBLAS, cuFFT, cuRAND, cuSPARSE, ...
Deal with basic tools (compiler, debugger, profiler).

121

Choices to accelerate your applications on
GPUs and material for teaching CUDA

[developer.nvidia.com/cuda-education-training] (also
available from CUDA Zone -> Resources -> Training materials)

122

Courses on-line (free access)

More than 50.000 registered users from 127 countries over
the last 6 months. An opportunity to learn from CUDA masters:

Prof. Wen-Mei Hwu (Univ. of Illinois).
Prof. John Owens (Univ. of California at Davis).
Dr. David Luebke (Nvidia Research).

There are two basic options, both recommended:
Introduction to parallel programming:

7 units of 3 hours = 21 hours.
Provides high-end GPUs to carry out the proposed assignments.
[https://developer.nvidia.com/udacity-cs344-intro-parallel-programming]

Heterogeneous Parallel Programming (at UIUC):
9 weeks, each with classes (20’ video), quizzes and programming assignments.
 [https://www.coursera.org/course/hetero]

123

Tutorials about C/C++, Fortran and Python

You have to register on the Amazon EC2 services available
on the Web (cloud computing): [nvidia.qwiklab.com]

They are usually sessions of 90 minutes.
Only a Web browser and SSH client are required.
Some tutorials are free, other require tokens of $29.99.

124

Talks and webinars

Talks recorded at GTC (Graphics Technology Conference):
383 talks from 2013.
More than 500 available from 2014 and 2015.

[www.gputechconf.com/gtcnew/on-demand-gtc.php]
Webinars about GPU computing:

List of past talks on video (mp4/wmv) and slides (PDF).
List of incoming on-line talks to be enrolled.

[developer.nvidia.com/gpu-computing-webinars]
CUDACasts:

[devblogs.nvidia.com/parallelforall/category/cudacasts]

125

Developers

 Sign up as a registered developer:
 [www.nvidia.com/paralleldeveloper]
 Access to exclusive developer downloads.
 Exclusive access to pre-release CUDA installers like CUDA 8.0.
 Exclusive activities an special offers.

 Meeting point with many other developers:
 [www.gpucomputing.net]

 GPU news and events:
 [www.gpgpu.org]

Technical questions on-line:
NVIDIA Developer Forums: [devtalk.nvidia.com]
Search or ask on: [stackoverflow.com/tags/cuda] 126

Developers (2)

 List of CUDA-enabled GPUs:
 [developer.nvidia.com/cuda-gpus]

127

 And a last tool for tuning code:
CUDA Occupancy Calculator

[developer.download.nvidia.com/compute/cuda/
CUDA_Occupancy_calculator.xls]

Future developments

Nvidia’s blog contains articles unveiling future technology
to be used within CUDA. It is the most reliable source about
what’s next (subscription recommended):

[devblogs.nvidia.com/parallelforall]

Some recommended articles:
“Getting Started with OpenACC”, by Jeff Larkin.
“New Features in CUDA 7.5”, by Mark Harris.
“CUDA Dynamic Parallelism API and Principles”, by Andrew Adinetz.
“NVLINK, Pascal and Stacked Memory: Feeding the Appetite for Big

Data”, by Denis Foley.
“CUDA Pro Tip: Increase Application Performance with NVIDIA GPU

Boost”, by Mark Harris.
128

