

Prerequisites for this tutorial

- You (probably) need experience with C.
- You do not need parallel programming background (but it helps if you have it).
- You do not need knowledge about the GPU architecture: We will start with the basic pillars.
- You do not need graphics experience. Those were the old times (shaders, Cg). With CUDA, it is not required any knowledge about vertices, pixels, textures, ...

Tutorial contents [109 slides]

- 1. Introduction. [15 slides]
- 2. Architecture. [14]
 - 1. CUDA hardware model. [3]
 - 2. The third generation: Kepler (2012-2014). [5]
 - 3. The fourth generation: Maxwell (2015-?). 5]
 - 4. Summary by generation. [1]
- 3. Programming. [17]
- 4. Syntax. [19]
 - 1. Basic elements. [12]
 - 2. A couple of preliminary examples. [7]
- 5. Examples: VectorAdd, Stencil, ReverseArray, MxM. [31]
- 6. Bibliography, resources and tools. [13]

DVIDIA

Manuel Ujaldon - Nvidia CUDA Fellow

Commercial models available for Kepler: GeForce vs. Tesla **⊠**NVIDIA TESLA Designed for gamers: Oriented to HPC: Price is a priority (<500€).</p> Reliable (3 years warranty). Availability and popularity. For cluster deployment. Small video memory (1-2 GB.). More video memory (6-12 GB.). Frequency slightly ahead. Tested for endless run (24/7). Hyper-Q only for CUDA streams. Hyper-Q for MPI. Perfect for developing code GPUDirect (RDMA) and other which can later run on a Tesla. features for GPU clusters.

Summary of GPU evolution

- 2001: First many-cores (vertex and pixel processors).
- 2003: Those processor become programmable (with Cg).
- 2006: Vertex and pixel processors unify.
- 2007: CUDA emerges.
- 2008: Double precision floating-point arithmetic.
- 2010: Operands are IEEE-normalized and memory is ECC.
- 2012: Wider support for irregular computing.
- 2014: The CPU-GPU memory space is unified.
- Still pending: Reliability in clusters and connection to disk.

lanuel Ujaldon - Nvidia CUDA Fellow

Three reason for feeling attracted to GPUs

Cost

- Low price due to a massive selling marketplace.
- Three GPUs are sold for each CPU, and the ratio keeps growing.

Ubiquitous

- Everybody already has a bunch of GPUs.
- And you can purchase one almost everywhere.

Power

Ten years ago GPUs exceed 200 watts. Now, they populate the Green 500 list. Progression in floating-point computation:

	GFLOPS/w on float (32-bit)	GFLOPS/w. on double (64-bit)
Fermi (2010)	5-6	3
Kepler (2012)	15-17	7
Maxwell (2014)	40	12

The 3 features which have made the GPU such a unique processor

The control required for one thread is amortized by 31 more (warp).

Scalability.

Makes use of the huge **data volume** handled by applications to define a sustainable parallelization model.

Productivity.

Endowed with efficient mechanisms for **switching immediately** to another thread whenever the one being executed suffers from **stalls**.

CUDA essential keywords:

Warp, SIMD, latency hiding, free context switch.

OVID

Manuel Ujaldon - Nvidia CUDA Fellow

What is CUDA? "Compute Unified Device Architecture"

- A platform designed jointly at software and hardware levels to make use of the GPU computational power in general-purpose applications at three levels:
 - Software: It allows to program the GPU with minimal but powerful SIMD extensions to enable heterogeneous programming and attain an efficient and scalable execution.
 - Firmware: It offers a driver oriented to GPGPU programming, which is compatible with the one used for rendering. Straightforward APIs manage devices, memory, ...
 - Hardware: It exposes GPU parallelism for general-purpose computing via a number of twin multiprocessors endowed with cores and a memory hierarchy.

CUDA C at a glance

- Essentially, it is C language with minimal extensions:
 - Programmer writes the program for a single thread, and the code is automatically instanciated over hundreds of threads.
- CUDA defines:
 - An architectural model:
 - With many processing cores grouped in multiprocessors who share a SIMD control unit.
 - A programming model:
 - Based on massive data parallelism and fine-grain parallelism.
 - Scalable: The code is executed on a different number of cores without recompiling it.
 - A memory management model:
 - More explicit to the programmer, where caches are not transparent anymore.

Goals:

- Build a code which scales to hundreds of cores in a simple way, allowing us to declare thousands of threads.
- Allow heterogeneous computing (between CPUs and GPUs).

anuel Uialdon - Nvidia CUDA Fellow

Heterogeneous Computing (2/4)

- © CUDA executes a program on a device (the GPU), which is seen as a coprocessor for the host (the CPU).
- CUDA can be seen as a library of functions which contains 3 types of components:
 - Host: Control and access to devices.
 - Device: Specific functions for the devices.
 - All: Vector data types and a set of routines supported on both sides.

CUDA evolution

- Over the past 7 years, Nvidia has manufactured more than 500 million CUDA-enabled GPUs.
- CUDA has evolved in the opposite direction we are used to: From scientists/researchers to more generic users.

CUDA version [year]	Users and highlights
1.0 [2007]	Researchers and early adopters
2.0 [2008]	Scientists and HPC applications
3.0 [2009]	Application innovation leaders
4.0 [2011]	Broader developer adoption
5.0 [2012]	Dynamic parallelism, object linking, Remote DMA.
6.0 [2014]	Unified CPU-GPU memory.
Next	Half precision in floating-point arithmetic

Scalability for the architecture: A summary of four generations

POSIX-threads in CPU

#define NUM_THREADS_16

int tid = (int) threadId;

pthread exit(NULL);

pthread_exit(NULL);

void main()

int t;

void *myfun (void *threadId)

CUDA in GPU, followed by host code in CPU

#define NUM_BLOCKS 1 #define BLOCKSIZE 16 _global__ void mykernel() float result = sin(tid) * tan(tid); int tid = threadIdx.x: float result = sin(tid) * tan(tid); void main() dim3 dimGrid (NUM_BLOCKS); dim3 dimBlock (BLOCKSIZE); for (t=0; t<NUM THREADS; t++) mykernel < < dimGrid, dimBlock >>>(); pthread_create(NULL,NULL,myfun,t); return EXIT SUCCESS:

2D configuration: Grid of 2x2 blocks, 4 threads each

```
#define NUM BLX 2
#define NUM_BLY 2
#define BLOCKSIZE 4
_global__ void mykernel()
 int bid=blockIdx.x*gridDim.y+blockIdx.y;
int tid=bid*blockDim.x+ threadIdx.x:
float result = sin(tid) * tan(tid);
void main()
dim3 dimGrid (NUM_BLX, NUM_BLY);
dim3 dimBlock(BLOCKSIZE);
 mykernel < < dimGrid, dimBlock >>>();
 return EXIT SUCCESS:
```

Structure of a CUDA program

- Each multiprocessor (SM) processes batches of blocks one after another.
 - Active blocks = blocks processed by one multiprocessor in one batch.
 - Active threads = all the threads from the active blocks.
- Registers and shared memory within a multiprocessor are split among the active threads. Therefore, for any given kernel, the number of active blocks depends on:
 - The number of registers that the kernel requires.
 - How much shared memory the kernel consumes.

The CUDA programming model

- The GPU (device) is a highly multithreaded coprocessor to the CPU (host):
 - Has its own DRAM (device memory).
 - Executes many threads in parallel on several multiprocessor cores.

- CUDA threads are extremely lightweight.
 - Very little creation overhead.
 - Context switching is essentially free.
- Programmer's goal: Declare thousands of threads to ensure the full utilization of hardware resources.

Preliminary definitions

Programmers face the challenge of exposing parallelism for thousands cores using the following elements:

- Device = GPU = Set of multiprocessors.
- Multiprocessor = Set of processors + shared memory.
- Kernel = Program ready to run on GPU.
- Grid = Array of thread blocks that execute a kernel.
- Thread block = Group of SIMD threads that:
 - Execute a kernel on different data based on threadID and blockID.
 - Can communicate via shared memory.
- Warp size = 32. This is the granularity of the scheduler for issuing threads to the execution units.

The CCC relation with the GPU marketplace Models aimed Commercial Year Manufacturing CCC **Code names** to CUDA process @ TSMC series range G80 Many 8xxx 2006-07 90 nm. G84,6 G92,4,6,8 8xxx/9xxx 2007-09 80, 65, 55 nm. Many GT215.6.8 2009-10 40 nm. Few 2xx GT200 Many 2xx 2008-09 65, 55 nm. GF100, GF110 4xx/5xx 2010-11 Huae 40 nm. GF104,6,8, GF114,6,8,9 4xx/5xx/7xx 2010-13 Few 40 nm. GK104.6.7 6xx/7xx 2012-14 28 nm. Some GK110, GK208 6xx/7xx/Titan 2013-14 28 nm. Huge GK210 (2xGK110) Very few Titan 2014 28 nm. GM107,8 Many 7xx 2014-15 28 nm. GM200,4,6 9xx/Titan 2014-15 Many 28 nm.

Resources and limitations depending on CUDA hardware generation (CCC)

GPU threads and blocks

Kepler's limits: 1024 threads per block, 2048 threads per multiprocessor

Blocks are assigned to multiprocessors

Grid 0 [Kepler's limit: 4G blocks per grid]

Threads are assigned to multiprocessors in blocks, and to cores via warps, which is the scheduling unit (32 threads).

Threads of a block share information via shared memory, and can synchronize via syncthreads () calls.

Playing with parallel constrainsts in Maxwell to maximize concurrency

- Limits within a multiprocessor: [1] 32 concurrent blocks, [2] 1024 threads/block and [3] 2048 threads total.
- 1 block of 2048 threads. Forbidden by [2].
- 2 blocks of 1024 threads. Feasible on the same multiproc.
- 4 blocks of 512 threads. Feasible on the same multiproc.
- 4 blocks of 1024 threads. Forbidden by [3] on the same multiprocessor, feasible involving two multiprocessors.
- 8 blocks of 256 threads. Feasible on the same multiproc.
- 256 blocks of 8 threads. Forbidden by [1] on the same multiprocessor, feasible involving 8 multiprocessors.

Manuel Uialdon - Nvidia CUDA Fellow

Playing with memory constraints in Maxwell (CCC 5.2) to maximize the use of resources

- Limits within a multiprocessor (SMX): 64 Kregs. and 96 KB. of shared memory. That way:
 - To allow a second block to execute on the same multiprocessor, each block must use at most 32 Kregs. and 48 KB of shared memory.
 - To allow a third block to execute on the same multiprocessor, each block must use at most 21.3 Kregs. and 32 KB. of shared mem.
- ... and so on. In general, the less memory used, the more concurrency for blocks execution.
- There is a trade-off between memory and parallelism!

GPU memory: Scope and location

- Threads within a block can use the shared memory to perform tasks in a more cooperative and faster manner.
- Global memory is the only visible to threads, blocks and kernels.

Manuel Uialdon - Nvidia CUDA Fellow

Think small: 1D partitioning on a 6

1D partitioning on a 64 elements vector

- Remember: Use finest grained parallelism (assign one data to each thread). Threads and blocks deployment:
 - 8 blocks of 8 threads each. Risk on smaller blocks: Waste parallelism if the limit of 8-16 blocks per multip. is reached.

4 blocks of 16 threads each. Risk on larger blocks: Squeeze the working set for each thread (remember that shared memory and register file are shared by all threads).

Now think big: 1D partitioning on a 64 million elems. array

- Maximum number of threads per block:
 - 1024 on Fermi, Kepler and Maxwell.
- Maximum number of blocks:
 - 64K on Fermi.
 - 4G on Kepler and Maxwell.
- Larger sizes for data structures can only be covered with a huge number of blocks (keeping fine-grained parallelism).
- Choices:
 - 64K blocks of 1K threads each.
 - 128K blocks of 512 threads each (not feasible in Fermi).
 - 256K blocks of 256 threads each (not feasible in Fermi).
 - ... and so on.

Manuel Uialdon - Nvidia CUDA Fellow

Partitioning data and computations

- A block is a batch of threads which can cooperate by:
 - Sharing data via shared memory.
 - Synchronizing their execution for hazard-free memory accesses.
- OA kernel is executed as a 1D or 2D grid of 1D, 2D or 3D of thread blocks.
- Multidimensional IDs are very convenient when addressing multidimensional arrays, for each thread has to bound its area/volume of local computation.

Summarizing about kernels, blocks, threads and parallelism

- Kernels are launched in grids.
- Each block executes fully on a single multiprocessor (SMX/SMM).
 - Does not migrate.
- Several blocks can reside concurrently on one SMX/SMM.
 - With control limitations. For example, in Kepler/Maxwell, we have:
 - Up to 16/32 concurrent blocks.
 - Up to 1024 threads per block.
 - Up to 2048 threads per SMX/SMM.
 - But usually, tighter limitations arise due to shared use of the register file and shared memory among all threads (as we have seen 3 slides ago).

Manuel Ujaldon - Nvidia CUDA Fellow

Memory spaces

- The CPU and the GPU have separated memory spaces:
 - To communicate them, we use the PCI express bus.
 - The GPU uses specific functions to allocate memory and copy data from CPU in a similar manner to what we are used with the C language (malloc/free).
- Pointers are only addresses:
 - You cannot derive from a pointer value if the address belongs to either the CPU or the GPU space.
 - You have to be very careful when handling pointers, as the program usually crashes when a CPU data attemps to be accessed from GPU and vice versa (with the introduction of unified memory, this situation changes from CUDA 6.0 on).

<u>)</u>

Manuel Lijaldon - Nvidia CUDA Fellow

CUDA is C with some extra keywords. A preliminar example

```
void saxpy_serial(int n, float a, float *x, float *y)
{
    for (int i = 0; i < n; ++i)
        y[i] = a*x[i] + y[i];
        C code on the CPU
}
// Invoke the SAXPY function sequentially
saxpy_serial(n, 2.0, x, y);</pre>
```

Equivalent CUDA code for its parallel execution on GPUs:

```
global__ void saxpy_parallel(int n, float a, float *x,
float *y)
{    // More on parallel access patterns later in example 2
    int i = blockIdx.x*blockDim.x + threadIdx.x;
    if (i < n) y[i] = a*x[i] + y[i];
}
// Invoke SAXPY in parallel with 256 threads/block
int nblocks = (n + 255) / 256;
saxpy_parallel<<<<nbloom>blocks</n>, 256>>>(n, 2.0, x, y);
```

Manuel Uialdon - Nvidia CUDA Fellow

List of extensions added to the C language

IV. Syntax

ON INVIDIA.

- Type qualifiers:
 - global, device, shared, local, constant.
- Keywords:
 - threadIdx, blockIdx, gridDim, blockDim.
- Intrinsics:
 - __syncthreads();
- Runtime API:
 - Memory, symbols, execution management.
- Kernel functions to launch code to the GPU from the CPU.

- __device__ float array[N];
- __global__ void med_filter(float *image) {
- __shared__ float region[M];
- ...
- region[threadIdx.x] = image[i];
- __syncthreads();
- image[j] = result;
- // Allocate memory in the GPU void *myimage; cudaMalloc(&myimage, bytes);
- // 100 thread blocks, 10 threads per block convolve <<< 100, 10>>> (myimage);

Interaction between CPU and GPU

- © CUDA extends the C language with a new type of function, kernel, which executes code in parallel on all active threads within GPU. Remaining code is native C executed on CPU.
- The typical main() of C combines the sequential execution on CPU and the parallel execution on GPU of CUDA kernels.
- A kernel is launched in an asynchronous way, that is, control always returns immediately to the CPU.
- Each GPU kernel has an implicit barrier when it ends, that is, it does not conclude until all its threads are over.
- We can exploit the CPU-GPU biprocessor by interleaving code with a similar workload on both.

NVIDIA

©


```
global__kernelA(){···}

global__kernelB(){···}

int main()

...

kernelA <<< dimGridA, dimBlockA >>> (params.);

cpu

kernelB <<< dimGridB, dimBlockB >>> (params.);

Serial Code

Parallel Kernel

KernelA<<< nBlk, nTid >>>(args);

Serial Code

Parallel Kernel

KernelB<<< nBlk, nTid >>>(args);
```

- A kernel does not start until all previous kernels are over.
- Streams allow you to run kernels in parallel.

Manuel Uialdon - Nvidia CUDA Fellow

Modifiers for the functions and launching executions on GPU

- Modifiers for the functions executed on GPU:
 - __global__ void MyKernel() { } // Invoked by the CPU
 - __device__ float MyFunc() { } // Invoked by the GPU
- Modifiers for the variables within GPU:
 - __shared__ float MySharedArray[32]; // In shared mem.
 - __constant__ float MyConstantArray[32];
- Configuration for the execution to launch kernels:
 - odim2 gridDim(100,50); // 5000 thread blocks
 odim3 blockDim(4,8,8); // 256 threads per blocks
 - MyKernel <<< gridDim,blockDim >>> (pars.); // Launch
 - Note: We can see an optional third parameter here to indicate as a hint the amount of shared memory allocated dynamically by the kernel during its
 - execution.

Manual Hialdon - Nvidia CUDA Follow

Data partition for a 2D matrix (say an image) [for a parallel access pattern, see example 2]

Intrinsics

```
odim3 gridDim; // Grid dimension: Number of blocks on each dim.
odim3 blockDim; // Block dimension: Block size on each dim.
ouint3 blockIdx; // Index to the block within the mesh
ouint3 threadIdx; // Index to the thread in the block
ovoid __syncthreads(); // Explicit synchronization
```

Programmer has to choose the block size and the number of blocks to exploit the maximum amount of parallelism for the code during its execution.

Functions to query at runtime the hardware resources we count on

- Each GPU available at hardware level receives an integer tag which identifies it, starting in 0.
- To know the number of GPUs available:
 - ocudaGetDeviceCount(int* count);
- To know the resources available on GPU dev (cache, registers, clock frequency, ...):
 - ocudaGetDeviceProperties(struct cudaDeviceProp* prop, int dev);
- To know the GPU that better meets certain requirements:
 - ©cudaChooseDevice(int* dev, const struct cudaDeviceProp* prop);
- To select a particular GPU:
 - ocudaSetDevice(int dev);
- To know in which GPU we are executing the code:
 - ocudaGetDevice(int* dev);

Manuel Uialdon - Nvidia CUDA Fellow

Managing video memory before CUDA 6.0

- To allocate and free GPU memory:
 - ocudaMalloc(pointer, size)
 - ocudaFree(pointer)
- To move memory areas between CPU and GPU:
 - \bigcirc On the CPU side, we declare malloc(h_A).
 - ○Also on the GPU side, we declare cudaMalloc(d_A).
 - And once this is done, we can:
 - Transfer data from the CPU to the GPU:
 - ocudaMemcpy(d A, h A, numBytes, cudaMemcpyHostToDevice);
 - Transfer data from the GPU to the CPU:
 - ocudaMemcpy(h A, d A, numBytes, cudaMemcpyDeviceToHost);
 - Prefix "h_" useful in practice as a tag for "host memory pointer".
 - Prefix "d " also useful as a tag for "device (video) memory".

The output of cudaGetDeviceProperties

This is exactly the output you get from the "DeviceQuery" code in the CUDA SDK.

There are 4 devices supporting CUDA

Device has ECC support enabled:

Device 0: "GeForce GTX 480"

```
CUDA Driver Version:
CUDA Runtime Version:
                                               4.0
CUDA Capability Major revision number:
CUDA Capability Minor revision number:
Total amount of global memory:
                                               1609760768 bytes
Number of multiprocessors:
Number of cores:
Total amount of constant memory:
                                               65536 bytes
Total amount of shared memory per block:
                                               32768
Total number of registers available per block:
Warp size:
Maximum number of threads per block:
                                               1024
Maximum sizes of each dimension of a block:
                                               1024 x 1024 x 64
Maximum sizes of each dimension of a grid:
                                               65535 x 65535 x 65535
Maximum memory pitch:
                                               2147483647 bytes
Texture alignment:
                                               512 bytes
Clock rate:
                                               1.40 GHz
Concurrent copy and execution:
                                               Yes
Run time limit on kernels:
Integrated:
Support host page-locked memory mapping:
                                               Default (multiple host threads can use this device simultaneously)
Compute mode:
Concurrent kernel execution:
```

Manuel Uialdon - Nvidia CUDA Fellow

Managing video memory from CUDA 6.0 on

- Simpler programming and memory model:
 - Single pointer to data, accessible anywhere.
 - Eliminate need for cudaMemcpy().
 - Greatly simplifies code porting.
- Performance through data locality:
 - Migrate data to accessing processor.
 - Guarantee global coherency.
 - Still allows cudaMemcpyAsync() hand tuning.

Additions to the CUDA API

- New call: cudaMallocManaged(pointer, size, flag)
 - Drop-in replacement for cudaMalloc(pointer, size).
 - The flag indicates who shares the pointer with the device:
 - ©cudaMemAttachHost: Only the CPU.
 - ©cudaMemAttachGlobal: Any other GPU too.
 - All operations valid on device mem. are also ok on managed mem.
- New keyword: __managed___
 - Global variable annotation combines with <u>__device__</u>.
 - Declares global-scope migratable device variable.
 - Symbol accessible from both GPU and CPU code.
- New call: cudaStreamAttachMemAsync()
 - Manages concurrently in multi-threaded CPU applications.

lanuel Ujaldon - Nvidia CUDA Fellow

OVIDIA

Example 1: What your code has to do

- Allocate N integers in CPU memory.
- Allocate N integers in GPU memory.
- Initialize GPU memory to zero.
- Copy values from GPU to CPU.
- Print values.

Example 1: Solution [C code in red, CUDA extensions in blue]

```
int main()
{
   int N = 16;
   int num_bytes = N*sizeof(int);
   int *d_a=0, *h_a=0; // Pointers in device (GPU) and host (CPU)

   h_a = (int*) malloc(num_bytes);
   cudaMalloc( (void**)&d_a, num_bytes);

   if( 0==h_a || 0==d_a ) printf("I couldn't allocate memory\n");

   cudaMemset( d_a, 0, num_bytes);
   cudaMemcpy( h_a, d_a, num_bytes, cudaMemcpyDeviceToHost);

   for (int i=0; i<N; i++) printf("%d ", h_a[i]);

   free(h_a);
   cudaFree(d_a);
}</pre>
```


Asynchronous memory transfers

- ocudaMemcpy() calls are synchronous, that is:
 - They do not start until all previous CUDA calls have finalized.
 - The return to the CPU does not take place until we have performed the actual copy in memory.
- From CUDA Compute Capabilities 1.2 on, it is possible to use the cudaMemcpyAsync() variant, which introduces the following differences:
 - The return to the CPU is immediate.
 - We can overlap computation and communication.

Example 2: Increment a scalar "b" to the N elements of a vector

Say N=16 and blockDim=4. Then we have 4 thread blocks, and each thread computes a single element of the vector. This is what we want: fine-grained parallelism for the GPU.

idx = 0,1,2,3

blockDim.x = 4threadIdx.x = 0,1,2,3

blockIdx.x = 1blockDim.x = 4threadIdx.x = 0,1,2,3

blockIdx.x = 2blockDim.x = 4threadIdx.x = 0,1,2,3

blockIdx.x = 3blockDim.x = 4threadIdx.x = 0,1,2,3idx = 12.13.14.15

int idx = (blockIdx.x * blockDim.x) + threadIdx.x; It will map from local index threadIdx.x to global index

Warning: blockDim.x should be >= 32 (warp size), this is just an example

Example 2: Increment a scalar value "b" to the N elements of an array

The C program. This file is compiled with acc

The CUDA kernel running on GPU followed by host code running on CPU. This file is compiled with **nvcc**

```
_global__ void increment_gpu(float *a, float b, int N)
void increment cpu(float *a, float b, int N)
                                                       int idx = blockIdx.x * blockDim.x + threadIdx.x;
      for (int idx = 0; idx<N; idx++)
                                                       if (idx < N)
                                                            a[idx] = a[idx] + b;
           a[idx] = a[idx] + b;
                                                 void main()
void main()
                                                       dim3 dimBlock (blocksize);
                                                       dim3 dimGrid (ceil(N/(float)blocksize));
      increment cpu(a, b, N);
                                                       increment gpu<<<dimGrid, dimBlock>>>(a, b, N);
```

More details for the CPU code of example 2 red for C, green for variables, blue for CUDA

```
// Reserve memory on the CPU
unsigned int numBytes = N * sizeof(float);
float* h A = (float*) malloc(numBytes);
// Reserve memory on the GPU
float* d A = 0; cudaMalloc(&d A, numbytes);
// Copy data from CPU to GPU
cudaMemcpy(d A, h A, numBytes, cudaMemcpyHostToDevice);
// Execute CUDA kernel with a number of blocks and block size
increment gpu <<< N/blockSize, blockSize >>> (d A, b);
// Copy data back to the CPU
cudaMemcpy(h A, d A, numBytes, cudaMemcpyDeviceToHost);
// Free video memory
cudaFree(d A);
```


Step for building the CUDA source code

- 1. Identify those parts with a good potential to run in parallel exploiting SIMD data parallelism.
- 2. Identify all data necessary for the computations.
- 3. Move data to the GPU.
- 4. Call to the computational kernel.
- 5. Establish the required CPU-GPU synchronization.
- 6. Transfer results from GPU back to CPU.
- 7. Integrate the GPU results into CPU variables.

Coordinated efforts in parallel are required

- Parallelism is given by blocks and threads.
- Threads within each block may require an explicit synchronization, as only within a warp it is guaranteed its joint evolution (SIMD). Example:

- Kernel borders place implicit barriers:
 - ©Kernel1 <<<nblocks,nthreads>>> (a,b,c);
 - ©Kernel2 <<<nblocks,nthreads>>> (a,b);
- Blocks can coordinate using atomic operations:
 - Example: Increment a counter atomicInc();

CPU code to handle memory and gather results from the GPU

```
unsigned int numBytes = N * sizeof(float);
// Allocates CPU memory
float* h A = (float*) malloc(numBytes);
float* h B = (float*) malloc(numBytes);
... initializes h A and h B ...
// Allocates GPU memory
float* d A = 0; cudaMalloc((void**)&d_A, numBytes);
float* d B = 0; cudaMalloc((void**)&d B, numBytes);
float* d C = 0; cudaMalloc((void**)&d C, numBytes);
// Copy input data from CPU into GPU
cudaMemcpy(d A, h A, numBytes, cudaMemcpyHostToDevice);
cudaMemcpy(d B, h B, numBytes, cudaMemcpyHostToDevice);
... CALL TO THE VecAdd KERNEL IN THE PREVIOUS SLIDE HERE...
// Copy results from GPU back to CPU
float* h C = (float*) malloc(numBytes);
cudaMemcpy(h C, d C, numBytes, cudaMemcpyDeviceToHost);
// Free video memory
cudaFree(d A); cudaFree(d B); cudaFree(d C);
```

The required code for the GPU kernel and its invocation from the CPU side

```
// Add two vectors of size N: C[1..N] = A[1..N] + B[1..N]
// Each thread calculates a single component of the output vector
__global___ void vecAdd(float* A, float* B, float* C) {
    int tid = threadIdx.x + (blockDim.x* blockIdx.x).
    C[tid] = A[tid] + B[tid];
}
int main() { // Launch N/256 blocks of 256 threads each
    vecAdd<<< N/256, 256>>>(d_A, d_B, d_C);
CPU code
}
```

- The <u>__global__</u> prefix indicates that <u>vecAdd()</u> will execute on device (GPU) and will be called from host (CPU).
- ○A, B and C are pointers to device memory, so we need to:
 - Allocate/free memory on GPU, using cudaMalloc()/cudaFree().
 - These pointers cannot be dereferenced in host code.

Manuel Ujaldon - Nvidia CUDA Fellow

Running in parallel (regardless of hardware generation)

- vecAdd <<< 1, 1 >>>
- () Executes 1 block composed of 1 thread no parallelism.
- ovecAdd <<< B, 1 >>>
- () Executes B blocks composed on 1 thread. Intermultiprocessor parallelism.
- ovecAdd <<< B, M >>>
- () Executes B blocks composed of M threads each. Inter- and intra-multiprocessor parallelism.

.

nuel Uialdon - Nvidia CUDA Fellow

Indexing arrays with blocks and threads

- With M threads per block, a unique index is given by:
 - otid = threadIdx.x+ blockDim.x* blockIdx.x;
- Consider indexing an array of one element per thread (because we are interested in fine-grained parallelism), B=4 blocks of M=8 threads each:

```
threadIdx.x threadIdx.x threadIdx.x threadIdx.x

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3
```

- Which thread will compute the 22nd element of the array?
 - \bigcirc gridDim.x is 4. blockDim.x is 8. blockIdx.x = 2. threadIdx.x = 5.
 - \bigcirc tid = 5 + (8 * 2) = 21 (we start from 0, so this is the 22nd element).

© NVIDIA

anuel Ujaldon - Nvidia CUDA Fellow

Handling arbitrary vector sizes

Typical problems are not friendly multiples of blockDim.x, so we have to prevent accessing beyond the end of arrays:

```
// Add two vectors of size N: C[1..N] = A[1..N] + B[1..N]
__global__ void vecAdd(float* A, float* B, float* C, N) {
   int tid = threadIdx.x + (blockDim.x * blockIdx.x);
   if (tid < N)
        C[tid] = A[tid] + B[tid];
}</pre>
```

And now, update the kernel launch to include the "incomplete" block of threads:

```
vecAdd<<< (N + M-1)/256, 256>>>(d_A, d_B, d_C, N);
```

Manuel Ujaldon - Nvidia CUDA Fellow

Rationale

- Looking at the previous example, threads add a level of complexity without contributing with new features.
- However, unlike parallel blocks, threads can:
 - Communicate (via shared memory).
 - Synchronize (for example, to preserve data dependencies).
- We need a more sophisticated example to illustrate all this...

110.11

Manuel Utaldon - Nyidia CUDA Fellov

1D Stencil

- Consider applying a 1D stencil to a 1D array of elements.
 - Each output element is the sum of input elements within a radius.
- If radius is 3, then each output element is the sum of 7 input elements:

- Again, we apply fine-grained parallelism for each thread to process a single output element.
- Input elements are read several times:
 - With radius 3, each input element is read seven times.

©

Manuel Uialdon - Nvidia CUDA Fellow

OVIDIA DVIDIA

Sharing data between threads. Limitations

- Shared memory and registers usage limit parallelism.
 - If we leave room for a second block, register file and shared memory are partitioned (even though blocks do not execute simultaneously, **context switch is immediate**).
- Examples for Kepler were shown before (for a max. of 64K registers and 48 Kbytes of shared memory per multiproc.):
 - To allocate two blocks per multiprocessor: The block cannot use more than 32 Kregisters and 24 Kbytes of shared memory.
 - To allocate three blocks per multiprocessor: The block cannot use more than 21.3 Kregisters and 16 Kbytes of shared memory.
 - To allocate four blocks per multiprocessor: The block cannot use more than 16 Kregisters and 12 Kbytes of shared memory.
 - ... and so on. Use the CUDA Occupancy Calculator to figure it out.

Sharing data between threads. Advantages

- Threads within a block can share data via shared memory.
 - Shared memory is user-managed: Declare with <u>__shared__</u> prefix.
- Data is allocated per block.
- Shared memory is extremely fast:
 - © 500 times faster than global memory (video memory GDDR5). The difference is technology: static (built with transistors) versus dynamic (capacitors).
 - Programmer can see it like an extension of the register file.
- Shared memory is more versatile than registers:
 - Registers are private to each thread, shared memory is private to each block.

Using Shared Memory

- Steps to cache data in shared memory:
 - Read (blockDim.x + 2 * radius) input elements from global memory to shared memory.
 - Compute blockDim.x output elements.
 - Write blockDim.x output elements to global memory.
- Each block needs a halo of radius elements at each boundary.

blockDim.x output elements

Stencil kernel

```
global void stencil 1d(int *d in, int *d out)
 shared int temp[BLOCKSIZE + 2 * RADIUS];
int gindex = threadIdx.x
          + blockIdx.x * blockDim.x;
int lindex = threadIdx.x + RADIUS;
// Read input elements into shared memory
temp[lindex] = d in[gindex];
if (threadIdx.x < RADIUS) {
  temp[lindex-RADIUS] = d in[gindex-RADIUS];
  temp[lindex+blockDim.x]=d in[gindex+blockDim.x];
// Apply the stencil
int result = 0:
for (int offset=-RADIUS; offset<=RADIUS; offset++)</pre>
 result += temp[lindex + offset];
// Store the result
d out[gindex] = result;
```

But we have to prevent race conditions. For example, last thread reads the halo before first thread (from a different warp) has fetched it. Synchronization among threads is required!

Manuel Ujaldon - Nvidia CUDA Fellow

Summary of major concepts applied during this example

- Launch N blocks with M threads per block to execute threads in parallel. Use:
 - okernel <<< N, M >>> ();
- Access block index within grid and thread index within block:
 - blockIdx.x and threadIdx.x;
- Calculate global indices where each thread has to work depending on data partitioning. Use:
 - oint index = threadIdx.x + blockIdx.x * blockDim.x;
- Declare a variable/array in shared memory. Use:
 - __shared__ (as prefix to the data type).
- Synchronize threads to prevent data hazards. Use:
 - syncthreads();

- Use __syncthreads() to synchronize all threads within a block:
 - All threads must reach the barrier before progressing.
 - This can be used to prevent RAW / WAR / WAW hazards.
 - In conditional code, the condition must be uniform across the block.

```
__global__ void stencil_ld(...)
{
    < Declare variables and indices >
        < Read input elements into shared memory >
        __syncthreads();
    < Apply the stencil >
        < Store the result >
}
```

Manuel Ujaldon - Nvidia CUDA Fellow

V. 3. Reversing the order of a vector of elements

GPU code for the ReverseArray kernel (1) using a single block

```
__global__ void reverseArray(int *in, int *out) {
  int index_in = threadIdx.x;
  int index_out = blockDim.x - 1 - threadIdx.x;

  // Reverse array contents using a single block
  out[index_out] = in[index_in];
}
```

It is a naive solution which does not aspire to apply massive parallelism. The maximum block size is 1024 threads, so that is the largest vector that this code would accept as input.

OVIDIA

Manuel Ujaldon - Nvidia CUDA Fellow

A more sophisticated version using shared memory

GPU code for the ReverseArray kernel (2) using multiple blocks

For an example of 4 blocks, each composed of 4 threads:

GPU code for the ReverseArray kernel (3) using multiple blocks and shared memory

- Dependency: In (i2), values written by a warp, have to be read (before) by another warp.
- Solution: Use a temp2[BLOCK SIZE] array to store intermediate results (also in (i4)).
- Improvement: (i3) is not required. Also, if you swap indices within temp[] and temp2[] in (i2), then (i1) is not required (but (i3) becomes mandatory).
- If you substitute all temp and temp2 instances by their equivalent expressions, you converge into the previous CUDA version.
- $^{\odot}$ Every array element is accessed once, so using shared memory does not improve anyway! $_{_{100}}$

Manuel Utaldon - Nvidia CUDA Fellow

Typical CPU code written in C language C = A * B. (P = M * N in hands-on) All square matrices of size N * N. Matrices are serialized into vectors to simplify dynamic memory allocation. void MxMonCFU(float* A, float* B, float* C, int N); for (int i=0; i<N; i++) for (int j=0; j<N; j++) { float sum=0; for (int k=0; k<N; k++) { float b = B[k*N + j]; sum += a*b; } C(i*N + j] = sum; } Manuel Ujaldon - Nvidia CUDA Fellow

CUDA version for the matrix product: Analysis

- Each thread requires 10 registers, so we can reach the maximum amount of parallelism in Kepler:
- \bigcirc 2 blocks of 1024 threads (32x32) on each SMX. (2x1024x10 = 20480 registers, which is lower than 65536 registers available).
- Problems:
- Low arithmetic intensity.
- Demanding on memory bandwidth, which becomes the bottleneck.
- Solution:
- Use shared memory on each multiprocessor.

1anuel Ujaldon - Nvidia CUDA Fellow

Tiling: Implementation details

- We have to manage all tiles involved within a thread block:
 - Load **in parallel** (all threads contribute) the input tiles (A and B) from global memory into shared memory. Tiles reuse the shared memory space.
 - __syncthreads() (to make sure we have loaded matrices before starting the computation).
 - Compute all products and sums for C using tiles within shared memory.
 Each thread can now iterate independently on tile elements.
 - __syncthreads() (to make sure that the computation with the tile is over before loading, in the same memory space within share memory, two new tiles of A and B in the next iteration).

A trick to avoid shared memory bank conflicts

- Rationale:
 - The shared memory is structured into 16 (pre-Fermi) or 32 banks.
 - Threads within a block are numbered in column major order, that is, the x dimension is the fastest varying.
- When using the regular indexing scheme to shared memory arrays: As [threadIdx.x][threadIdx.y], threads within a half-warp will be reading from the same column, that is, from the same bank in shared memory.
- However, using As [threadIdx.y] [threadIdx.x], threads within a half-warp will be reading from the same row, which implies reading from a different bank each.
- So, tiles store/access data transposed in shared memory.

Manuel Lijaldon - Nvidia CUDA Fellow

Tiling: The CUDA code for the GPU kernel global void MxMonGPU(float *A, float *B, float *C, int N) int sum=0, tx, ty, i, j; tx = threadIdx.x; ty = threadIdx.y; i = tx + blockIdx.x * blockDim.x; j = ty + blockIdx.y * blockDim.y; shared float As[32][32], float Bs[32][32]; // Traverse tiles of A and B required to compute the block submatrix for C for (int tile=0; tile<(N/32); tile++) // Load tiles (32x32) from A and B in parallel (and store them transposed) As[ty][tx] = A[(i*N) + (ty+(tile*32))];Bs[ty][tx] = B[((tx+(tile*32))*N) + j];__syncthreads(); // Compute results for the submatrix of C for (int k=0; k<32; k++) // Data have to be read from tiles transposed too sum += As[k][tx] * Bs[ty][k]; __syncthreads(); , // Write all results for the block in parallel C[i*N+j] = sum;

Getting Started

First steps for getting started in parallel computing

Learn more >

Optimized Libraries

Drop-in, Industry standard libraries replace MKL, IPP, FFTW and other widely used libraries. Some feature automatic multi-GPU scaling,

Get Started with GPU-Accelerated Libraries

Compiler Directives

Easy: simply insert hints in your code Open: run on either CPU or

Powerful: tap into the power of GPUs within minutes

Get Started with Directives

Programming Language

Develop your own parallel applications and libraries using a programming language you already know.

Get Started With:

- C/C++ using CUDA C
- Fortran using CUDA **Fortran**
- Python

CUDA Zone: The root Web for CUDA programmers

[developer.nvidia.com/cuda-zone]

About CUDA

All about the NVIDIA CUDA parallel computing platform

Learn more >

Tools & Ecosystem

From accelerated cloud appliances to profiling tools, a gold mine of information

Learn more >

Getting Started

First steps for getting started in parallel computing

Learn more >

Academic Collaboration

Partner with NVIDIA to advance parallel computing education and research

Learn more >

CUDA Downloads

Get the latest and greatest version of the CUDA Toolkit

Learn more >

Resources

Materials and links especially for GPU Computing professionals and developers

Tools & Ecosystem

From accelerated cloud appliances to profiling tools, a gold mine of information

Accelerated Solutions

GPUs are accelerating many applications across numerous industries

Language and APIs

accessed from most popular

GPU acceleration can be

programming languages.

Learn more >

Learn more >

Numerical Analysis Tools

Applications with high arithmetic density can enjoy amazing GPU acceleration.

Learn more >

Performance Analysis Tools

Find the best solutions for analyzing your application's performance profile.

Learn more >

Debugging Solutions

GPU-Accelerated

Adding acceleration to your

calling a library function.

application can be as easy as

Libraries

Learn more >

Powerful tools can help debug complex parallel applications in intuitive ways.

Learn more >

Key Technologies Learn more about parallel

computing technologies and architectures

Cluster Management Managing your GPU cluster will

help achieve maxium

Job Scheduling

Scheduling jobs on your GPU Cluster can be simple and intuitive

Guides for developers and more documents

- Getting started with CUDA C: Programmers guide.
 - [docs.nvidia.com/cuda/cuda-c-programming-guide]
- For tough programmers: The best practices guide.
 - [docs.nvidia.com/cuda/cuda-c-best-practices-guide]
- The root web collecting all CUDA-related documents:
 - [docs.nvidia.com/cuda]
- where we can find, additional guides for:
 - Installing CUDA on Linux, MacOS and Windows.
 - Optimize and improve CUDA programs on Kepler and Maxwell GPUs.
 - © Check the CUDA API syntax (runtime, driver and math).
 - Learn to use libraries like cuBLAS, cuFFT, cuRAND, cuSPARSE, ...
 - Deal with basic tools (compiler, debugger, profiler).

Courses on-line (free access)

- More than 50.000 registered users from 127 countries over the last 6 months. An opportunity to learn from CUDA masters:
 - Prof. Wen-Mei Hwu (Univ. of Illinois).
 - Prof. John Owens (Univ. of California at Davis).
 - Dr. David Luebke (Nvidia Research).
- There are two basic options, both recommended:
 - Introduction to parallel programming:

 - 7 units of 3 hours = 21 hours.
 - UDACITY Provides high-end GPUs to carry out the proposed assignments.
 - [https://developer.nvidia.com/udacity-cs344-intro-parallel-programming]
 - Heterogeneous Parallel Programming (at UIUC): courserg
 - 9 weeks, each with classes (20' video), guizzes and programming assignments.
 - [https://www.coursera.org/course/hetero]

Choices to accelerate your applications on GPUs and material for teaching CUDA

available from CUDA Zone -> Resources -> Training materials)

CUDA Education & Training

Accelerate Your Applications Learn using step-by-step instructions, video tutorials and code

- Accelerate Applications on GPUs with OpenACC Dip Accelerated Numerical Analysis Tools with GPUs

Teaching Resources

Get the latest educational slides, hands-on exercises and access to GPUs for you

NVIDIA Research & Academic Programs

Sign up to join the Accelerated Computing Educators Network. This network seeks to provide a collaborative area for those looking to educate others on massively parallel organisming. Receive undates on new educational material, access to CUDA Cloud Sign-up Today!

QUICKLINKS

Tools & Ecosyste

NVIDIA Nsight Visual Studio Editio

Tweets by @GPUComputing > Follow

Tutorials about C/C++, Fortran and Python

- You have to register on the Amazon EC2 services available on the Web (cloud computing): [nvidia.gwiklab.com]
 - They are usually sessions of 90 minutes.
 - Only a Web browser and SSH client are required.
 - Some tutorials are free, other require tokens of \$29.99.

Talks and webinars

- Talks recorded at GTC (Graphics Technology Conference):
 - 383 talks from 2013.
 - More than 500 available from 2014 and 2015.
 - [www.gputechconf.com/gtcnew/on-demand-gtc.php]
- Webinars about GPU computing:
 - List of past talks on video (mp4/wmv) and slides (PDF).
 - List of incoming on-line talks to be enrolled.
 - [developer.nvidia.com/qpu-computing-webinars]
- CUDACasts:
 - [devblogs.nvidia.com/parallelforall/category/cudacasts]

Developers (2)

- I ist of CUDA-enabled GPUs:
 - [developer.nvidia.com/cuda-gpus]

- And a last tool for tuning code: **CUDA Occupancy Calculator**
- [developer.download.nvidia.com/compute/cuda/ CUDA Occupancy calculator.xls1

- [www.nvidia.com/paralleldeveloper]
- Access to exclusive developer downloads.
- Exclusive access to pre-release CUDA installers like CUDA 8.0.
- Exclusive activities an special offers.
- Meeting point with many other developers:
 - [www.qpucomputing.net]
- GPU news and events:
 - [www.qpqpu.orq]
- Technical questions on-line:
 - NVIDIA Developer Forums: [devtalk.nvidia.com]
 - Search or ask on: [stackoverflow.com/tags/cuda]

Future developments

- Nvidia's blog contains articles unveiling future technology to be used within CUDA. It is the most reliable source about what's next (subscription recommended):
 - [devblogs.nvidia.com/parallelforall]
- Some recommended articles:
 - "Getting Started with OpenACC", by Jeff Larkin.
 - "New Features in CUDA 7.5", by Mark Harris.
 - "CUDA Dynamic Parallelism API and Principles", by Andrew Adinetz.
 - "NVLINK, Pascal and Stacked Memory: Feeding the Appetite for Big Data", by Denis Foley.
 - "CUDA Pro Tip: Increase Application Performance with NVIDIA GPU Boost", by Mark Harris.