Programming GPUs with CUDA

Tutorial at 18t IEEE CSE’15 and 13th IEEE EUC’15 conferences
Porto (Portugal). October, 20th, 2015

Manuel Ujaldon
A/Prof. @ University of Malaga (Spain)
Conjoint Senior Lecturer @ Univ. of Newcastle (Australia)
CUDA Fellow @ Nvidia

<ANVIDIA.

NVIDIA|

isites for this tutorial

=

Prereq

You (probably) need experience with C.

You do not need parallel programming background
(but it helps if you have it).

You do not need knowledge about the GPU architecture:
We will start with the basic pillars.

You do not need graphics experience. Those were the old
times (shaders, Cg). With CUDA, it is not required any
knowledge about vertices, pixels, textures, ...

Tutorial content

nnnnnn

nviDIA.

@
@

[109 slides)
1. Introduction. [15 slides]
2. Architecture. [14]
1. CUDA hardware model. [3]
2. The third generation: Kepler (2012-2014). [5]
3. The fourth generation: Maxwell (2015-?). 5]
4. Summary by generation. [1]
3. Programming. [17]
4. Syntax. [19]
1. Basic elements. [12]
2. A couple of preliminary examples. [7]
5. Examples: VectorAdd, Stencil, ReverseArray, MxM. [31]
6. Bibliography, resources and tools. [13]

l. Introduction

<ANVIDIA.

Welcorme to the GPU world

=

NVIDIA|

The characters of this story:
The CUDA family picture

GPU Computing Applications

Programming Languages

CUDA-Enabled NVIDIA GPUs

<
nvioia.

2 athematica
Fortral Pytl DirectCompute DIfECHEs
Wraj pp (e.g. OpenACC)

Manuel Ujaldon - Nvidia CUDA Fellow

|

NVIDIA.

Cornmercial models available for Kepler:
GeForce vs. Tesla

§G4€rce GTX Titan @)

'Designed for gamers: ‘Oriented to HPC:
Price is a priority (<500€). Reliable (3 years warranty).
Availability and popularity. For cluster deployment.
Small video memory (1-2 GB.). More video memory (6-12 GB.).
Frequency slightly ahead. Tested for endless run (24/7).
Hyper-Q only for CUDA streams. Hyper-Q for MPL.
Perfect for developing code GPUDirect (RDMA) and other

which can later run on a Tesla. features for GPU clusters.
b2} Manuel Ujaldon - Nvidia CUDA Fellow :

7

The impressive evolution of CUDA
Year 2008 Year 2015
100.000.000
.000.000 cuna-capable Grus
reecns Il | WMmmEE £ 0
150.000 DD EEEREE 3.000.000 cupa downosds per yeer

CUDA downloads DR EEEDE R (thetis one every 9 seconds)

- | | WSOGUGGARCCOGEMOLCUGENOURGERTOUAEATD 75 s
supercomputer

in top500.0rg

ceeeoes 4| [O000QQNO00GGQOO0NGAOOOOQTTDOOONEIND - e st s

60 1L 3-4-4-4-4-4 ? university courses
university courses " ‘P? ‘P?? 840 ity

academi.poapoeg % %%%%%%%%%%%%%% k 221‘2‘2280&3 .

Manuel Ujaldon - Nvidia CUDA Fellow

5>

NVIDIA|

Surrnary of GPU evolution

2001: First many-cores (vertex and pixel processors).
2003: Those processor become programmable (with Cg).
2006: Vertex and pixel processors unify.

2007: CUDA emerges.

2008: Double precision floating-point arithmetic.

2010: Operands are IEEE-normalized and memory is ECC.
2012: Wider support for irregular computing.

2014: The CPU-GPU memory space is unified.

Still pending: Reliability in clusters and connection to disk.

|

NVIDIA.

The 3 features which have made
the GPU such a unique processor

Simplified.
The control required for one thread is amortized by 31 more (warp).
Scalability.

Makes use of the huge data volume handled by applications to
define a sustainable parallelization model.

Productivity.

Endowed with efficient mechanisms for switching immediately to
another thread whenever the one being executed suffers from stalls.

CUDA essential keywords:
Warp, SIMD, latency hiding, free context switch.

Manuel Ujaldon - Nvidia CUDA Fellow

<

NVIDIA|

Three reason for feeling attracted to GPUs

Cost
Low price due to a massive selling marketplace.
Three GPUs are sold for each CPU, and the ratio keeps growing.

Ubiquitous
Everybody already has a bunch of GPUs.
And you can purchase one almost everywhere.

Power

Ten years ago GPUs exceed 200 watts. Now, they populate the
Green 500 list. Progression in floating-point computation:
GFLOPS/w on float (32-bit) |GFLOPS/w. on double (64-bit)

Fermi (2010) 5-6 3
Kepler (2012) 15-17 7

Maxwell (2014) 40 12 N

>N Manuel Ujaldon - Nvidia CUDA Fellow

Manuel Ujaldon - Nvidia CUDA Fellow

<

NVIDIA.

What is CUDA?
“Compute Unified Device Architecture”

A platform designed jointly at software and hardware levels to
make use of the GPU computational power in general-purpose
applications at three levels:

Software: It allows to program the GPU with minimal but
powerful SIMD extensions to enable heterogeneous
programming and attain an efficient and scalable execution.

Firmware: It offers a driver oriented to GPGPU
programming, which is compatible with the one used for
rendering. Straightforward APIs manage devices, memory, ...

Hardware: It exposes GPU parallelism for general-purpose

computing via a number of twin multiprocessors endowed
with cores and a memory hierarchy.

12
>N Manuel Ujaldon - Nvidia CUDA Fellow

CUDA C at a glance

>

NVIDIA.

Essentially, it is C language with minimal extensions:
Programmer writes the program for a single thread, and the code is
automatically instanciated over hundreds of threads.
CUDA defines:
An architectural model:
With many processing cores grouped in multiprocessors who share a SIMD control un
A programming model:

Based on massive data parallelism and fine-grain parallelism.
Scalable: The code is executed on a different number of cores without recompiling it.

A memory management model:
More explicit to the programmer, where caches are not transparent anymore.
Goals:

Build a code which scales to hundreds of cores in a simple way, allowin
us to declare thousands of threads.

Allow heterogeneous computing (between CPUs and GPUs).

Manuel Ujaldon - Nvidia CUDA Fellow

it.

g

<
Heterogeneous Computing (2/4)
CUDA executes a program on a device (the GPU), which is seen as a co-
processor for the host (the CPU).
CUDA can be seen as a library of functions which contains 3 types of
components:
Host: Control and access to devices.
Device: Specific functions for the devices.
All: Vector data types and a set of routines supported on both sides.
CPU (host)
GPU
Cores ems o Caches (device)
3-channel (192 bits = 24 bytes))
@ 1.333 GHz| 32 GB/s. 384 bits @ 2x 3 GHzjj 288 GB/s.
System Memory Video memory
(DDR3) PCl-e 3.0: 8 GB/s (GDDR5)
15
2 Manuel Ujaldon - Nvidia CUDA Fellow

<

NVIDIA.

Heterogeneous Computing (1/4)

Terminology:
Host: The CPU and the memory on motherboard [DDR3 as of 2013].

Device: The graphics card [GPU + video memory]:
GPU: Nvidia GeForce/Tesla.
Video memory: GDDRS5 as of 2015.

@ L Tﬂ%

ST

Host Device

Manuel Ujaldon - Nvidia CUDA Fellow

<

NVIDIA.

Heterogeneous Computing (3/4)

Application Code

Rest of Sequential
CPU Code

Compute-Intensive Functions

]

The code to be written in CUDA can be lower than 5%,
but exceed 50% of the execution time if remains on CPU. .

nvioia. Manuel Ujaldon - Nvidia CUDA Fellow

S

NVIDIA.

Heterogeneous Computing (4/4)

DEVICE CODE:
Parallel function
| written in CUDA.

HOST CODE: /

- Serial code. ‘

} - Parallel code—— V
} - Serial code. — .

=2, Manuel Ujaldon - Nvidia CUDA Fellow

-

(|

NVIDIA|

CUDA evolution

Over the past 7 years, Nvidia has manufactured more than
500 million CUDA-enabled GPUs.

CUDA has evolved in the opposite direction we are used to:
From scientists/researchers to more generic users.

CUDA version [year] Users and highlights

1.0 [2007] Researchers and early adopters

2.0 [2008] Scientists and HPC applications

3.0 [2009] Application innovation leaders

4.0 [2011] Broader developer adoption

5.0 [2012] Dynamic parallelism, object linking, Remote DMA.
6.0 [2014] Unified CPU-GPU memory.

Next Half precision in floating-point arithmetic

19

>N Manuel Ujaldon - Nvidia CUDA Fellow

S

NVIDIA.

If we have a CUDA architecture, we can
approach prograrnming in different ways...

NVIDIA GPU with the
CUDA Parallel Computing Architecture

Il. Architecture

NVIDIA

I1.1.

<SANVIDIA.

CUDA hardware model

The CUDA hardwara rnr.J I

structured, a tale o

A GPU consists of:
N multiprocessors (or SMs), each

containing M cores (or stream procs).

Massive parallelism:
Applied to thousands of threads.
Sharing data at different levels.

Heterogeneous computing:
GPU:

Data intensive.
Fine-grain parallelism.l

CPU: |

Control/management.|

G80
(Tesla)

2006-07 2008-09

16
8
128

Multiprocessor N
Multiprocessor 2

Multiprocessor 1

Core 1 Core 2

GT200
(Tesla)

GF100
(Fermi)

2010-11
30 14-16
8 32
240 448-512

GK110
[CEED]

2012-13
13-15

192
2496-2880

(GM200)
Maxwell

2014-15

512-3072

4-24
128

24
2
20
18
16
14

GFLOPS in double precision for each watt consumed

nardware ger

nerations

B Pascal
g 3D Memory

NVLink

Mavcwsell

NVIDIA.

Coarse-grain parallelism.

23

Global memory is the actual
video memory (GDDRS5):
Three times faster than the
DDR3 used by the CPU, but...
... around 500 times slower
than shared memory! (DRAM
versus SRAM).

nviDiA.

Processor 1

i

Processor2 | o o o

Processor M

{
‘ Constant

Global memory

12 g Unified memory
10 DX12
8 Keple
6 g Dynamlc Parallelism
4
B Ferm|
2 B tosh -
E CUDA E FPos
2008 2010 2012 2014 2016 »
I\, ~ P
Mernory nierarchy
Each multiprocessor has: oy
A register flle Multiprocessor N
Shared memory_ MuItiprocessorZ.
A constant cache and a texture "
cache, both read-only. Shared memory
Registers J Registers] Registers J

Il. 2. The third gene“ration:
Kepler (GK1xx)

NVIDIA

<

NVIDIA|

Multiprocessor evolution:
Frorn SMs in Fermi to SMXs in Kepler

5
core cors ore BN core core core SRR

Sl CEE

c...Mc«..-u,.,“c‘,..- o e o e [e G e Y

I N -~ -

= w.-cmm‘
o) o e R o s

>N Manuel Ujaldon - Nvidia CUDA Fellow

S

NVIDIA.

Kepler GK110 Block Diagram

7.1 billion transistors.
15 SMX multiprocs.
> 1 TFLOP FP64.

1.5 MB L2 Cache.
384-bit GDDR5.

PCI Express Gen3.

26

=2 Manuel Ujaldon - Nvidia CUDA Fellow
(|

NVIDIA.

The SMX multiprocessor

Instruction scheduling
and issuing in warps

Front-end

Instructions execution.
512 functional units:

- 192 for ALUs.

- 192 for FPUs S.P.

- 64 for FPUs D.P.

- 32 for load/store.

- 32 for SFUs (log,sqrt, ...)

Back-end

o o o] |
P
FEEL BB
o o e [o

2 Manuel Ujaldon - Nvidia CUDA Fellow

Frorn SM multiprocessor in Fermi GF100
to SMX multiprocessor in Kepler GK110

ll. 3. The fourth genération:
Maxwell (GM1xx)

NVIDIA.

S

NVIDIA.

The way GigaThread scheduling works

Each grid provides a number of blocks, which are assigned
to mult. (up to 32 blocks in Maxwell, 16 in Kepler, 8 in Fermi).

Blocks are split into warps (groups) of 32 threads.

Warps are issued for each instruction in kernel threads (up
to 64 active warp-instructions in Kepler, 48 in Fermi). Ex:

s sry
ore o cor| R core Core corol [co>r 50

core core core BRI core core core [SRRN
Mcmm-cmtmun omcmcm-wcw-cm-
C«ncmcan-tmtmcon
o o e [o < o

o
con] o] cor] RN e e o R >~

=2 Manuel Ujaldon - Nvidia CUDA Fellow

30

<

NVIDIA.

Maxwell and SMM rnultiprocessors
(for GeForce GTX 980, 16 SMMs)

Pei

1870 Mt.
148 mm?. e e

32

2 Manuel Ujaldon - Nvidia CUDA Fellow

<

NVIDIA|

The SMMs

Dt —

Keep the same 4 warp
schedulers, and the same LD/
ST and SFU units.

Reduce the number of
cores for int and float:

from 192 to 128 units. |cecmmmT
Major enhancements
KEPLER MAXWELL

1%t Generation

135% conmo oo

AN EES
Performance/Core T
NEREENRER
EENEEEEN

y o

Performance/Watt

35
>N Manuel Ujaldon - Nvidia CUDA Fellow

<

NVIDIA.

A cormparison versus Kepler

NVIDIA Kepler SMX NVIDIA Maxwell SMM

con cam

I EEEE
IENEEEEEEEEEE
S 5N SN SN S S S S S S
I EEEEEEEE

34

=2 Manuel Ujaldon - Nvidia CUDA Fellow

<

NVIDIA.

Power efficiency

5x

GTX 750 Ti
15t Gen Maxwell

o 4x

©

=

B 3x

b GTX 650 Ti

< Kepler

E 2x

o GTX 550 Ti

E Fermi

Q. 1x

[

2010 2012 2014

36
>N Manuel Ujaldon - Nvidia CUDA Fellow

ll. 6. A summary of four generations

<SANVIDIA.

lll. Programming

<ANVIDIA.

GT200 GK104| GK110 |GK110|GK210 GM107|GM204
(K10) | (K20X) | (K40) | (K80) |(6TX750)| (GTX980)

nviDIA.

Scalability for the architecture
A surnrmary of four generations

-

Tesla Fermi Kepler Maxwell

Time frame |2006| 2008 2013 2014 | 2014
/107 | /09 /14 /15 | /15
CUDA Compute 37
Capability .

16 30 16 7 8 14 15 30 5 16
8 8 32 48 192 192 192 192 128 128
640 2048

128 240 512 336 1536 2688 2880 5760

nvibia.

[
nVIDIA.

Comparing the GPU and the CPU

/ Software abstraction \ / GPU hardware \ / CPU \

Th;ead Core

(LT}

Vector SSE

LT
LT

/ \ Mutticore /

Thread block

40

nviDia.

5>

NVIDIA|

Frorn POSIX threads in CPU
to CUDA threads in GPU

CUDA in GPU, followed by 2D configuration: Grid of

host code in CPU 2x2 blocks, 4 threads each

#define NUM_BLX 2
#define NUM_BLY 2
#define BLOCKSIZE 4
__global__ void mykernel()

POSIX-threads in CPU

#define NUM_THREADS 16

void *myfun (void *threadId) L SIBILEEo S0

#define BLOCKSIZE 16

{ __global__ void mykernel()
int tid = (int) threadId;

float result = sin(tid) * tan(tid);
pthread_exit(NULL);

{
int tid = threadIdx.x;
float result = sin(tid) * tan(tid);

int bid=blockIdx.x*gridDim.y+blockIdx.y;
int tid=bid*blockDim.x+ threadIdx.x;

} float result = sin(tid) * tan(tid);
L }
. . void main()
void main() { void main()
{ dim3 dimGrid (NUM_BLOCKS); {

intt;

dim3 dimBlock (BLOCKSIZE); dim3 dimGrid (NUM_BLX, NUM_BLY);
for (t=0; t<NUM_THREADS; t++)

mykernel<<<dimGrid, dimBlock>>>();| dim3 dimBlock(BLOCKSIZE);
pthread_crgate(NULL,NULL,myfun,t); return EXIT_SUCCESS; mykernel<<<dimGrid, dimBlock>>>();
ez Iy) return EXIT_SUCCESS;

L }

41
=2, Manuel Ujaldon - Nvidia CUDA Fellow

<

NVIDIA|

Structure of a CUDA program

Each multiprocessor (SM) processes batches of blocks one
after another.

Active blocks = blocks processed by one multiprocessor in one
batch.

Active threads = all the threads from the active blocks.

Registers and shared memory within a multiprocessor are
split among the active threads. Therefore, for any given
kernel, the number of active blocks depends on:

The number of registers that the kernel requires.
How much shared memory the kernel consumes.

43

>R Manuel Ujaldon - Nvidia CUDA Fellow

The CUDA programming rnodel

|

NVIDIA.

The GPU (device) is a highly multithreaded coprocessor
to the CPU (host):

Has its own DRAM (device memory).

Executes many threads in parallel on several multiprocessor cores.

 Multipr 1 Multip 2|

Multiprocessor N

CUDA threads are extremely lightweight.
Very little creation overhead.
Context switching is essentially free.
Programmer’s goal: Declare thousands of threads to
ensure the full utilization of hardware resources.

42

=2 Manuel Ujaldon - Nvidia CUDA Fellow

Preliminary definitions

<

NVIDIA.

Programmers face the challenge of exposing parallelism for
thousands cores using the following elements:

Device = GPU = Set of multiprocessors.
Multiprocessor = Set of processors + shared memory.
Kernel = Program ready to run on GPU.

Grid = Array of thread blocks that execute a kernel.
Thread block = Group of SIMD threads that:

Execute a kernel on different data based on threadID and
blockID.

Can communicate via shared memory.

Warp size = 32. This is the granularity of the scheduler for
issuing threads to the execution units.

44
2. Manuel Ujaldon - Nvidia CUDA Fellow

The relation between hardware and software
frormn a mernory access perspective

<

NVIDIA|

GPU § Thread

Multiprocessor N

Thread block

Multiprocessor 2

Multiprocessor 1

On-chip
memory

’ Processor 1 [:: Processor 2 ‘I‘ Processor M [:

Memory e 4] [4] [i 4]

outside the

GPU chip
>(but within the
graphics card)

W

o | [
|| e

— [
I)
>R Manuel Ujaldon - Nvidia CUDA Fellow

A A o

The CCC relation with the GPU marketplace

> |

NVIDIA|

ccc @rBRETTS Models aimed Comm_ercial Year | Manufacturing
to CUDA series range | process @ TSMC

G80 Many Bxxx 2006-07 90 nm.
G84,6 G92,4,6,8 Many 8XXX/9XXX 2007-09 80, 65, 55 nm.
GT215,6,8 Few 2xx 2009-10 40 nm.
GT200 Many 2xx 2008-09 65, 55 nm.
GF100, GF110 Huge 4xx/5xx 2010-11 40 nm.
GF104,6,8, GF114,6,8,9 Few AXX/5XX/7XX 2010-13 40 nm.
GK104,6,7 Some Gxx/7xx 2012-14 28 nm.
GK110, GK208 Huge 6xx/7xx/Titan 2013-14 28 nm.
GK210 (2xGK110) Very few Titan 2014 28 nm.
GM107,8 Many 7xx 2014-15 28 nm.
GM200,4,6 Many 9xx/Titan 2014-15 28 nm.

> Manuel Ujaldon - Nvidia CUDA Fellow

HO
g

NVIDIA.

Resources and limitations depending
on CUDA hardware generation (CCC)

CUDA Compute Capability (CCC)

Limitation

Multiprocessors / GPU 16 30 14-16| 13-16 4,5, ...| Hardware | Scalability
Cores / Multiprocessor 8 8 32 192 128| Hardware | Scalability
Threads / Warp 32 32 32 32 32| Software | Throughput
Blocks / Multiprocessor 8 8 8 16 32| Software | Throughput
Threads / Block 512 512 1024 1024 1024| Software | Parallelism
Threads / Multiprocessor 768 1024 1536 2048 2048| Software | Parallelism
32 bits registers / Multip. 8K 16K 32K 64K 64K| Hardware | Working set

Shared memory / Multip. 16K 16K ‘1‘25 32K lfé(lé ggﬁ gg; Hardware | Working set

Manuel Ujaldon - Nvidia CUDA Fellow

nvibia.

47|

k> |
NVIDIA.
e N
Kepler's limits: 1024 threads per block, 2048 threads per multiprocessor
—
Blocks are
assigned to

multiprocessors
_

[Kepler’s limit: 16
concurrent blocks
per multiprocessor]

Block 0 Block 1 Block 2

Grid 0 [Kepler's limit: 4G blocks per grid]

J

~ Threads are assigned to multiprocessors in blocks, and to
cores via warps, which is the scheduling unit (32 threads).

~ Threads of a block share information via shared memory,
and can synchronize via syncthreads () calls. .

Ve

2. Manuel Ujaldon - Nvidia CUDA Fellow

5>

NVIDIA|

Playing with parallel constrainsts
in Maxwell to maximize concurrency

- Limits within a multiprocessor: [1] 32 concurrent blocks,
[2] 1024 threads/block and [3] 2048 threads total.

> 1 block of 2048 threads. Forbidden by [2].
» 2 blocks of 1024 threads. Feasible on the same multiproc.
- 4 blocks of 512 threads. Feasible on the same multiproc.

> 4 blocks of 1024 threads. Forbidden by [3] on the same
multiprocessor, feasible involving two multiprocessors.

. 8 blocks of 256 threads. Feasible on the same multiproc.

» 256 blocks of 8 threads. Forbidden by [1] on the same
multiprocessor, feasible involving 8 multiprocessors.

49|
=, Manuel Ujaldon - Nvidia CUDA Fellow

Playing with mermory constraints in Maxwell
(CCC 5.2) to maximize the use of resources

» Limits within a multiprocessor (SMX): 64 Kregs. and 96
KB. of shared memory. That way:

- To allow a second block to execute on the same multiprocessor,
each block must use at most 32 Kregs. and 48 KB of shared memory.

To allow a third block to execute on the same multiprocessor,
each block must use at most 21.3 Kregs. and 32 KB. of shared mem.

' ... and so on. In general, the less memory used, the more
concurrency for blocks execution.

' There is a trade-off between memory and parallelism!

51
>R Manuel Ujaldon - Nvidia CUDA Fellow

NVIDIA.

GPU memory: Scope and location

Blocks to share
RF.RF RFRF,RFIRF RF[RF the same
’ "’ “4 multiprocessor
: ;"’“""“‘".”"'A.“"‘U".L%; if memory

constraints are
Shared memory fulfilled
““““1

_

ry

Constant and
texture memo
also available

Block 0 Block 1 Block 2
Legend: RF = Register file. LM = Local Memory Grld O
| GPU memory: [GiizD)

' Threads within a block can use the shared memory to perform
tasks in @ more cooperative and faster manner.

»Global memory is the only visible to threads, blocks and kernels.

50
= Manuel Ujaldon - Nvidia CUDA Fellow

Think small:
1D partitioning on a 64 elernents vector

'Remember: Use finest grained parallelism (assign one
data to each thread). Threads and blocks deployment:

- 8 blocks of 8 threads each. Risk on smaller blocks: Waste
parallelism if the limit of 8-16 blocks per multip. is reached.

0

- 4 blocks of 16 threads each. Risk on larger blocks:
Squeeze the working set for each thread (remember that
shared memory and register file are shared by all threads).

LA R A A

2. Manuel Ujaldon - Nvidia CUDA Fellow

Now think big:
1D partitioning on a 64 million elems. array

5>

NVIDIA|

Maximum number of threads per block:
1024 on Fermi, Kepler and Maxwell.
Maximum number of blocks:
64K on Fermi.
4G on Kepler and Maxwell.

Larger sizes for data structures can only be covered with a
huge number of blocks (keeping fine-grained parallelism).

Choices:

64K blocks of 1K threads each.

128K blocks of 512 threads each (not feasible in Fermi).

256K blocks of 256 threads each (not feasible in Fermi).

.. and so on. 5

kX Manuel Ujaldon - Nvidia CUDA Fellow.

Partitioning data and computations

<

NVIDIA|

GPU (device)

A is a batch of threads el
which can cooperate by: Grid 1
Sharing data via shared memory. =~ Keme!t oo | ao |l e
Synchronizing their execution for Zioac Taie i Bne
hazard-free memory accesses. o 1)" (,1) '. 2,1)

A kernel is executed as a 1D

[Gnd 2
or 2D of 1D, 2D or 3D of Yotz j[.
Multidimensional IDs are very ";'.,ocm,u - mmj

convenient when addressing
multidimensional arrays, for each
thread has to bound its area/
volume of local computation.

]

55

>R Manuel Ujaldon - Nvidia CUDA Fellow

|

NVIDIA.

Surmrmarizing about kernels,
blocks, threads and parallelism

Kernels are launched in grids.
Each block executes fully on a
single multiprocessor (SMX/SMM).

Does not migrate.
Several blocks can reside
concurrently on one SMX/SMM.

With control limitations. For
example, in Kepler/Maxwell, we have:

Up to 16/32 concurrent blocks. T 0 1 101 1 1

Block (0, 0) Block (1, 0)

Shared memory ‘ ‘ Shared memory ‘

Regs Regs Regs Regs

Up to 1024 threads per block. Thread Thread Thread Thread
Up to 2048 threads per SMX/SMM. (0,0) (1,0) (0,0) (1,0)
But usually, tighter limitations arise I I I I
due to shared use of the register file and

shared memory among all threads (as
we have seen 3 slides ago).

Global memory
I

54

=2 Manuel Ujaldon - Nvidia CUDA Fellow

<

NVIDIA.

Memory spaces

' The CPU and the GPU have separated memory spaces:
To communicate them, we use the PCI express bus.

The GPU uses specific functions to allocate memory and copy data
from CPU in a similar manner to what we are used with the C
language (malloc/free).

‘Pointers are only addresses:

You cannot derive from a pointer value if the address belongs to
either the CPU or the GPU space.

You have to be very careful when handling pointers, as the program
usually crashes when a CPU data attemps to be accessed from GPU
and vice versa (with the introduction of unified memory, this
situation changes from CUDA 6.0 on).

Manuel Ujaldon - Nvidia CUDA Fellow

IV. Syntax

<ANVIDIA.

<3

NVIDIA|

List of extensions added to the C language

Type qua|lflerS: __device__ float array[N];
global, device, shared, local, constant. __giobal__ void med_filter(float *image)

KeywordS' __shared__ float region[M];
threadIdx, blockIdx, gridDim, blockDim.
region[threadldx.x] = imagelil;
Intrinsics:
__syncthreads(); __syncthreads(;
Runtime API: imagel) = esul
Memory’ SymbOIS, execution // Allocate memory in the GPU
management. void *myimage;

cudaMalloc(&myimage, bytes);

Kernel functions to launch code to
the GPU from the CPU.

// 100 thread blocks, 10 threads per block
convolve<<<100, 10>>> (myimage);

<

CUDA s C with sofme extra keywords.
A preliminar example

void saxpy_serial(int n, float a, float *x, float *y)
{
for (int i = 0; i < n; ++1)

C code on the CPU
}

// Invoke the SAXPY function sequentially
saxpy_serial(n, 2.0, X, y);

Equivalent CUDA code for its parallel execution on GPUs:

void saxpy_parallel(int n, float a, float *x,

float *y)

{ // More on parallel access patterns later in example 2
int i = LX* X+ 'S
if (3 < n)

// Invoke SAXPY in parallel with 256 threads/block
int nblocks = (n + 255) / 256;
saxpy_parallel (n, 2.0, x, y);

nnnnnn

<3

NVIDIA.

CUDA extends the C language with a new type of function,
kernel, which executes code in parallel on all active threads
within GPU. Remaining code is native C executed on CPU.

The typical main () of C combines the sequential execution
on CPU and the parallel execution on GPU of CUDA kernels.

A kernel is launched in an asynchronous way, that is, control
always returns immediately to the CPU.

Each GPU kernel has an implicit barrier when it ends, that is,
it does not conclude until all its threads are over.

We can exploit the CPU-GPU biprocessor by interleaving code
with a similar workload on both.

60

5>

NVIDIA|

Interaction between CPU and GPU (cont.)

__global__ kernelA(){---}
__global__ kernelB(){---}

int main()
) } CPU
'§ kernelA <<< dimGridA, dimBlockA >>> (params.); — GPU
2 cPU
&l | kernelB <<< dimGridB, dimBlockB >>> (params.); —. Gpu

Serial Code

Serial Code

KernelB<<< nBlIk, nTid >>>(args);

<

NVIDIA|

Modifiers for the functions and
launching executions on GPU

Modifiers for the functions executed on GPU:
__global__ void MyKernel() { } // Invoked by the CPU
__device__ float MyFunc() { } // Invoked by the GPU

Modifiers for the variables within GPU:
__shared__ float MySharedArray[32]; // In shared mem.
__constant___ float MyConstantArray[32];

Configuration for the execution to launch kernels:
dim2 gridDim(100,50); // 5000 thread blocks
dim3 blockDim(4,8,8); // 256 threads per blocks
MyKernel <<< gridDim,blockDim >>> (pars.); // Launch

Note: We can see an optional third parameter here to
indicate as a hint the amount of shared memory
allocated dynamically by the kernel during its
execution.

63
>N Manuel Ujaldon - Nvidia CUDA Fellow

|

NVIDIA.

Data partition for a 2D matrix (say an image)
[for a parallel access pattern, see example 2]

Image width
Block (0, 0) Block ((gridDim.x)-1, 0)
Thread (0,0) Thread (1,0) (blockDim.x-1,0 Thread (0,0) Thread (1,0) (lockbimx-1,0f | The (hOI’, ver) position for
ecoe ecoe Xxx Iy i id i
ecco||lesss| |esse ecee|/cees| |esse||| theblock within the grid is
s000 /0000 soee eo0e (00 sooe (blockIdx.x, blockIdx.y).
0000 |[000e|...|0000 0000 (000 XXX L
: ; —— || The (hor,ver) position for
(0,blockDim.y-1) (1,blockDim.y-1) GlockBimly 0,blockDim.y-1) (1, blockDim.y il the thread within the block
ceeellecce ceee ceeolleccel® is(threadIdx.x, threadIdx.y).
- eee0e0 (0000 XX X) ee00e (0000
= 0000|0000 | . . |00ce((000 eeee (0000 .
° = —= For a grid of 16x16 blocks
5 ° % e | of 8x8 threads, each
@'| | [Block (0, (gridDim.y)-1) Block ((gridDim.x)-1, (gridDim:y)-1) || responsible of 4x4 data:
E Thread (0,0) Thread (1,0) (blockDim.x-1,0} Thread (0,0) Thread (1,0) (blockDimx-1,0] |*..
o000 o000 o000 o000 o000 [XXX]) ‘Forthisthread:
000 0000 o000 (XX X RINKE XN 0000, - blockIdx.x is (gridDim.x)-1, that is, 15.
o000 o000 o000 [XX N] o000 0000 | - blockIdx.y is 0.
0000 [|0000 ... 0000 0000 (0000 |...|0000 ||| |-threadidx.xis 1.
.) HIAN threadIdx.y is 0.
(0,blockDim.y-1) (1,blockDim.y-1) BlockBIm 1 (0.blockDim.y-1) (1,blockdimy-1) BlockDimacts [| This pixel is in the column:
®000 (0000 o000 o000 (0000 [XXX} [blockIdx.x * blockDim.x * 4] +
000 (0000 L AN] [XX YRR X X X] [XXX] (threadIdx.x * 4) + 2, that is,
(XX X (XX N) (XX N) (XX X) (XXX (XXX [15*8* 4] + (1 *4) + 2 = 486.
0000 (0000 | |occco| 00O 0000 (0000 | , o000 And in the row:
[l y * im.y * 4] +
threadldx.y *4)+1=0+0+1=1. J52
= Manuel Ujaldon - Nvidia CUDA Fellow

<

NVIDIA.

Intrinsics

dim3 gridDim; // Grid dimension: Number of blocks on each dim.

dim3 blockDim; // Block dimension: Block size on each dim.

uint3 blockIdx; // Index to the block within the mesh
uint3 threadIdx; // Index to the thread in the block

void _ syncthreads(); // Explicit synchronization

Programmer has to choose the block size and the number
of blocks to exploit the maximum amount of parallelism for
the code during its execution.

64
2. Manuel Ujaldon - Nvidia CUDA Fellow

>

nvibia_

Functions to query at runtirme
the hardware resources we count on

<

NVIDIA|

> Each GPU available at hardware level receives an integer

tag which identifies it, starting in 0.

> To know the number of GPUs available:
~cudaGetDeviceCount (int* count);

> To know the resources available on GPU dev (cache,

registers, clock frequency, ...):

~cudaGetDeviceProperties(struct cudaDeviceProp* prop, int dev);

»To know the GPU that better meets certain requirements:

cudaChooseDevice(int* dev, const struct cudaDeviceProp* prop);
> To select a particular GPU:
~cudaSetDevice(int dev);

> To know in which GPU we are executing the code:
cudaGetDevice(int* dev);

Manuel Ujaldon - Nvidia CUDA Fellow

©

Managing video mermory before CUDA 6.0

>

NVIDIA|

> To allocate and free GPU memory:
~cudaMalloc(pointer, size)

~cudaFree(pointer)

> To move memory areas between CPU and GPU:
~0On the CPU side, we declare malloc(h_A).
~ Also on the GPU side, we declare cudaMalloc(d_A).

And once this is done, we can:

- Transfer data from the CPU to the GPU:
cudaMemcpy(d_A, h_A, numBytes, cudaMemcpyHostToDevice);

- Transfer data from the GPU to the CPU:
cudaMemcpy(h_A, d_A, numBytes, cudaMemcpyDeviceToHost);

'Prefix “h_" useful in practice as a tag for “host memory pointer”.
~Prefix “d_" also useful as a tag for “device (video) memory”.

nvioia.

67|

> Manuel Ujaldon - Nvidia CUDA Fellow

NVIDIA.

The output of cudaGetDeviceProperties

> This is exactly the output you get from the “DeviceQuery”
code in the CUDA SDK.

There are 4 devices supporting CUDA

Device 0: "GeForce GTX 480"

CUDA Driver Version: 4.0

CUDA Runtime Version: 4.0

CUDA Capability Major revision number: 2

CUDA Capability Minor revision number: 0

Total amount of global memory: 1609760768 bytes
Number of multiprocessors: 15

Number of cores: 480

Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes
Total number of registers available per block: 32768

Warp size: 32

Maximum number of threads per block: 1024

Maximum sizes of each dimension of a block: 1024 x 1024 x 64
Maximum sizes of each dimension of a grid:
Maximum memory pitch:

Texture alignment:

65535 x 65535 x 65535
2147483647 bytes
512 bytes

Clock rate: 1.40 GHz

Concurrent copy and execution: Yes

Run time limit on kernels: No

Integrated: No

Support host page-locked memory mapping: Yes

Compute mode: Default (multiple host threads can use this device simultaneously)

Concurrent kernel execution: Yes

Device has ECC support enabled: No 66
>N Manuel Ujaldon - Nvidia CUDA Fellow

(S |

NVIDIA.

Managing video mernory frorn CUDA 6.0 on

- Simpler programming and memory model:
~Single pointer to data, accessible anywhere.
~ Eliminate need for cudaMemcpy ().
- Greatly simplifies code porting.
~ Performance through data locality:
~ Migrate data to accessing processor.
- Guarantee global coherency.
/Still allows cudaMemcpyAsync () hand tuning.

2. Manuel Ujaldon - Nvidia CUDA Fellow

>

NVIDIA.

Additions to the CUDA API

New call: cudaMallocManaged (pointer,size,flag)
Drop-in replacement for cudaMalloc (pointer, size).

The flag indicates who shares the pointer with the device:
cudaMemAttachHost: Only the CPU.
cudaMemAttachGlobal: Any other GPU too.

All operations valid on device mem. are also ok on managed mem.
New keyword: __managed___

Global variable annotation combines with __device__.

Declares global-scope migratable device variable.

Symbol accessible from both GPU and CPU code.
New call: cudaStreamAttachMemAsync ()

Manages concurrently in multi-threaded CPU applications.

<3

NVIDIA|

Exarmple 1: What your code has to do

O

Allocate N integers in CPU memory.
Allocate N integers in GPU memory.
Initialize GPU memory to zero.
Copy values from GPU to CPU.
Print values.

IV. 2. Preliminary examples

<ANVIDIA.

<3

NVIDIA.

example 1: Solution
[C code in red, CUDA extensions in blue]

int main()

{

int N = 16;
int num bytes = N*sizeof(int);
int *d_a=0, *h_a=0; // Pointers in device (GPU) and host (CPU)

h a = (int*) malloc(num bytes);
cudaMalloc((void**)&d _a, num bytes);

if(0==h a || 0==d_a) printf("I couldn’t allocate memory\n");

cudaMemset(d_a, 0, num bytes);
cudaMemcpy(h_a, d_a, num bytes, cudaMemcpyDeviceToHost);

for (int i=0; i<N; i++) printf("sd ", h_a[i]);

free(h_a);
cudaFree(d_a);

72

<

NVIDIA|

Asynchronous merory transfers

~cudaMemcpy () calls are synchronous, that is:
They do not start until all previous CUDA calls have finalized.
-~ The return to the CPU does not take place until we have performed
the actual copy in memory.
> From CUDA Compute Capabilities 1.2 on, it is possible to
use the cudaMemcpyAsync () variant, which introduces
the following differences:
' The return to the CPU is immediate.
*We can overlap computation and communication.

>R Manuel Ujaldon - Nvidia CUDA Fellow

>

NVIDIA|

Example 2: Increment a scalar "b”
to the N elernents of a vector

Say N=16 and blockDim=4. Then we have 4 thread blocks,
and each thread computes a single element of the vector.
This is what we want: fine-grained parallelism for the GPU.

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3
blockDim.x = 4 blockDim.x = 4 blockDim.x = 4 blockDim.x = 4
threadIdx.x = 0,1,2,3 threadIdx.x = 0,1,2,3 threadIdx.x = 0,1,2,3 threadIdx.x = 0,1,2,3
idx=0,1,2,3 idx = 4,5,6,7 idx = 8,9,10,11 idx = 12,13,14,15

w
oc
o0
o
==
o9
&%
Jo

intidx = (blockIdx.x * blockDim.x) + threadIdx.x; Same access

It will map from local index threadIdx.x to global index ?hartgaag;for cll

Warning: blockDim.x should be >= 32 (warp size), this is just an example
>R Manuel Ujaldon - Nvidia CUDA Fellow

NVIDIA.

Example 2: Increment a scalar value “b”
to the N elements of an array

The CUDA kernel running on GPU
followed by host code running on CPU.
This file is compiled with nvcc

The C program.
This file is compiled with gcc

__global__ void increment_gpu(float *a, float b, int N)

void increment_cpu(float *a, float b, int N) i
{ int idx = blockIdx.x * blockDim.x + threadIdx.x;
for (int idx = 0; idx<N; idx++) if (idx < N)
afidx] = a[idx] + b; a[idx] = a[idx] + b;
) }
void main()
void main() ¢

dim3 dimBlock (blocksize);
dim3 dimGrid (ceil(N/(float)blocksize));
increment_gpu<<<dimGrid, dimBlock>>>(a, b, N);

increment_cpu(a, b, N);

74
= Manuel Ujaldon - Nvidia CUDA Fellow

(S |

NVIDIA.

More details for the CPU code of example 2
[red for C, green for variables, blue for CUDA]

// Reserve memory on the CPU
unsigned int numBytes = N * sizeof (float);
float* h A = (float*) malloc(numBytes) ;

// Reserve memory on the GPU
float* d A = 0; cudaMalloc(&d A, numbytes);

// Copy data from CPU to GPU
cudaMemcpy (d_A, h_A, numBytes, cudaMemcpyHostToDevice) ;

// Execute CUDA kernel with a number of blocks and block size
increment gpu <<< N/blockSize, blockSize >>> (d_A, b);

// Copy data back to the CPU
cudaMemcpy (h_A, d A, numBytes, cudaMemcpyDeviceToHost) ;

// Free video memory
cudaFree (d_A) ;
>N Manuel Ujaldon - Nvidia CUDA Fellow

> |

NVIDIA.

CUDA code
unified memory

CUDA code (from 6.0 on)
unified memory

void incr (float *a, float b, int N) void incr (float *a, float b, int N)
{int idx = = + ; {int idx = & +
if (idx < N) if (idx < N)
a[idx] = a[idx] + b; alidx] = a[idx] + b;
void main() void main()
{ {
unsigned int numBytes = N*sizeof(float);
float* h_A = (float*) malloc(numBytes); float* numBytes);
float* d_A; (&d_A, numBytes);
(d_A,h_A,numBytes, %
incr<<<N/blocksize,blocksize>>>(d_A,b,N); incr<<<N/blocksize,blocksize>>>(,b,N);
(h_A,d_A,numBytes,);
(d_A);
free(h_A); ()7
} }

<3

NVIDIA|

-

Step for building the CUDA source code

1. Identify those parts with a good potential to run in
parallel exploiting SIMD data parallelism.

2. Identify all data necessary for the computations.
3. Move data to the GPU.

4. Call to the computational kernel.

5. Establish the required CPU-GPU synchronization.
6. Transfer results from GPU back to CPU.

7. Integrate the GPU results into CPU variables.

V. Programming kernels: VectorAdd,
Stencil, ReverseArray, MxM

<ANVIDIA.

<

NVIDIA.

Coordinated efrorts in parallel are required

Parallelism is given by blocks and threads.

Threads within each block may require an explicit
synchronization, as only within a warp it is guaranteed its
joint evolution (SIMD). Example:

a[i] = b[i] + 7;
syncthreads () ;
x[1] = a[i-1]; // The warp 1 reads here the value of a[31l],

// which should have been written by warp 0 BEFORE

Kernel borders place implicit barriers:
Kernell <<<nblocks,nthreads>>> (a,b,c);
Kernel2 <<<nblocks,nthreads>>> (a,b);
Blocks can coordinate using atomic operations:

Example: Increment a counter atomicInc();

80

V. 1. Adding two vectors

<SANVIDIA.

]

The required code for the GPU kernel
and its invocation from the CPU side

// Add two vectors of size N: C[l..N] = A[l..N] + B[1l..N]
// Each thread calculates a single component of the output vector
__global__ void vecAdd(float* A, float* B, float* C) {
int tid = threadIdx.x + (blockDim.x* blockIdx.x):*
C[tid] = A[tid] + B[tid]; GPU code
}
int main() { // Launch N/256 blocks of 256 threads each
vecAdd<<< N/256, 256>>>(d_A, d B, d C);

} CPU code

The global prefix indicates that vecadd () will
execute on device (GPU) and will be called from host (CPU).

A, B and ¢ are pointers to device memory, so we need to:
Allocate/free memory on GPU, using cudaMalloc()/cudaFree().
These pointers cannot be dereferenced in host code.

82

nnnnnn

CPU code to handle mermory
and gatner results frorn the GPU

unsigned int numBytes = N * sizeof (float);
// Allocates CPU memory
float* h A = (float*) malloc(numBytes) ;
float* h B = (float*) malloc(numBytes) ;

. initializes h A and h B ...
// Allocates GPU memory

float* d A = 0; cudaMalloc((void**)&d A, numBytes);
float* d B = 0; cudaMalloc((void**)&d B, numBytes);
float* d C = 0; cudaMalloc((void**)&d C, numBytes);

// Copy input data from CPU into GPU
cudaMemcpy (d_ A, h_A, numBytes, cudaMemcpyHostToDevice) ;
cudaMemcpy (d_B, h_B, numBytes, cudaMemcpyHostToDevice) ;
. CALL TO THE VecAdd KERNEL IN THE PREVIOUS SLIDE HERE...
// Copy results from GPU back to CPU
float* h C = (float*) malloc(numBytes) ;
cudaMemcpy (h_C, d_C, numBytes, cudaMemcpyDeviceToHost) ;
// Free video memory
cudaFree (d_A); cudaFree(d_B); cudaFree(d_C);

> |

NVIDIA|

>
running in parallel
(regardiess of hardware generation)
vecAdd <<< 1, 1 >>> GPU
() Executes 1 block composed P bl in 20 goner)]

of 1 thread - no parallelism.

vecAdd <<< B, 1 >>>
() Executes B blocks

Multiprocessor 2
Multiprocessor 1

Shared memory

composed on 1 thread. Inter- Rogiers | Registers | Reiters |
multiprocessor parallelism. Core1 Core2 was CoreM
vecAdd <<< B, M >>> (scalability in 3rd gener.)
I I I
() Executes B blocks ure cache

composed of M threads each.]
Inter- and intra-multiprocessor o [
parallelism. oba’ memory

84

>

nviDia.

> |

NVIDIA.

Indexing arrays with blocks and threads

With M threads per block, a unique index is given by:
tid = threadIdx.x+ blockDim.x* blockIdx.Xx;
Consider indexing an array of one element per thread
(because we are interested in fine-grained parallelism), B=4
blocks of M=8 threads each:

threadIdx.x threadIdx.x
0[1/23/a[E6|7/0[1/2|3]4|5/6|7

blockIdx.x = 2 blockIdx.x = 3

Which thread will compute the 22nd element of the array?
gridDim.x is 4. blockDim.x is 8. blockIdx.x = 2. threadIdx.x = 5.
tid =5 + (8 * 2) = 21 (we start from 0, so this is the 22nd element).

. Stencil kernels

<ANVIDIA.

rlandling arbitrary vector sizes

Typical problems are not friendly multiples of blockDim.x,
so we have to prevent accessing beyond the end of arrays:

// Add two vectors of size N: C[l..N] = A[l..N] + B[l..N]
__global__ void vecAdd(float* A, float* B, float* C, N) {
int tid = threadIdx.x + (blockDim.x * blockIdx.x);
if (tid < N)
C[tid] = A[tid] + B[tid];
}

And now, update the kernel launch to include the
"incomplete" block of threads:

vecAdd<<< (N + M-1)/256, 256>>>(d A, d B, d C, N);

nnnnnn

]

NVIDIA.

86

rRational

®

Looking at the previous example, threads add a level of
complexity without contributing with new features.
However, unlike parallel blocks, threads can:
Communicate (via shared memory).
Synchronize (for example, to preserve data dependencies).
We need a more sophisticated example to illustrate all
this...

<

NVIDIA.

88

5>

1D Stencil

‘Consider applying a 1D stencil to a 1D array of elements.
Each output element is the sum of input elements within a radius.

> If radius is 3, then each output element is the sum of 7
input elements:

H_}—r—’

radius radius

> Again, we apply fine-grained parallelism for each thread to
process a single output element.

' Input elements are read several times:
~ With radius 3, each input element is read seven times.

89
>R Manuel Ujaldon - Nvidia CUDA Fellow

5>

NVIDIA|

Sharing data between threads. Limitations

»Shared memory and registers usage limit parallelism.

If we leave room for a second block, register file and shared
memory are partitioned (even though blocks do not execute
simultaneously, context switch is immediate).

'Examples for Kepler were shown before (for a max. of 64K
registers and 48 Kbytes of shared memory per multiproc.):

- To allocate two blocks per multiprocessor: The block cannot use
more than 32 Kregisters and 24 Kbytes of shared memory.

To allocate three blocks per multiprocessor: The block cannot use
more than 21.3 Kregisters and 16 Kbytes of shared memory.

To allocate four blocks per multiprocessor: The block cannot use
more than 16 Kregisters and 12 Kbytes of shared memory.

.. and so on. Use the CUDA Occupancy Calculator to figure it out.

91

NVIDIA|

NVIDIA.

Sharing data between threads. Advantages

' Threads within a block can share data via shared memory.
Shared memory is user-managed: Declare with _ shared_ prefix.
Data is allocated per block.

Shared memory is extremely fast:

»500 times faster than global memory (video memory - GDDR5). The difference is
technology: static (built with transistors) versus dynamic (capacitors).

Programmer can see it like an extension of the register file.
Shared memory is more versatile than registers:
Registers are private to each thread, shared memory is private to each block.

90
= Manuel Ujaldon - Nvidia CUDA Fellow

o Manuel Ujaldon - Nvidia CUDA Fellow

(S |

NVIDIA.

Using Shared Memory

' Steps to cache data in shared memory:

Read (blockDim.x + 2 * radius) input elements from global
memory to shared memory.

Compute blockDim.x output elements.
Write blockDim. x output elements to global memory.
'Each block needs a halo of radius elements at each
boundary.
iiiiiii-iiii
halo on left halo on right
i'i'i'ii-i

blockDim.x output elements

Manuel Ujaldon - Nvidia CUDA Fellow

Q)

P
26
V]

tencil kernel

__global__ void stencil_1d(int *d_in, int *d_out)
{

int temp[BLOCKSIZE + 2 * RADIUS];

= threadIdx.x

+ blockIdx.x * blockDim.x;

= threadIdx.x + RADIUS;

int gindex
int lindex

// Read input elements into shared memory
temp[lindex] = d_in[gindex];
if (threadIdx.x < RADIUS) {
temp[lindex-RADIUS] = d_in[gindex-RADIUS];
temp[lindex+blockDim.x]=d_in[gindex+blockDim.x];

}

// Apply the stencil

int result = 0;

for (int offset=-RADIUS; offset<=RADIUS; offset++)
result += temp[lindex + offset];

// Store the result
d_out[gindex] = result;

nVIDIA.

IS

T IR I S T I S I aaE

O I 15115 515 5 15 15 I I8 S IS IS S 1)

But we have to prevent race
conditions. For example, last
thread reads the halo before
first thread (from a different
warp) has fetched it.
Synchronization among
threads is required!

Surnrary of major concepts
applied during this exarnple

Launch N blocks with M threads per block to execute threads

in parallel. Use:
kernel <<< N, M >>> ();

Access block index within grid and thread index within block:

blockIdx.x and threadIdx.x;

Calculate global indices where each thread has to work

depending on data partitioning. Use:

int index = threadIdx.x + blockIdx.x * blockDim.x;

Declare a variable/array in shared memory. Use:

__shared__ (as prefix to the data type).

Synchronize threads to prevent data hazards. Use:

__syncthreads();

S

NVIDIA|

nviDIA.

-

1on

[

Threads synchroniza

Use syncthreads () to synchronize all threads within
a block:
All threads must reach the barrier before progressing.
This can be used to prevent RAW / WAR / WAW hazards.
In conditional code, the condition must be uniform across the block.

__global_ _ void stencil_1d(...)
{

< Declare variables and indices >

< Read input elements into shared memory >
__syncthreads();

< Apply the stencil >

< Store the result >

94

nnnnnn

_~0

V. 3. Reve
of a vector of elements

<ANVIDIA.

C = [= Diavareal =\ le@ =
GPU code Tor the ReverseArray kernel
(1) using a single block

global _ void reverseArray(int *in, int *out) {

int index in = threadIdx.x;

int index out = blockDim.x — 1 — threadIdx.x;

// Reverse array contents using a single block
out[index out] = in[index_in];

}

It is @ naive solution which does not aspire to apply
massive parallelism. The maximum block size is 1024
threads, so that is the largest vector that this code would
accept as input.

nvibia

NVIDIA.

NVIDIA.

GPU code Tor the ReverseArray kernel
(2) using rultiple blocks

global__ void reverseArray(int *in, int *out) { // For thread 0 within block 0:
int in_offset = blockIdx.x * blockDim.x; // in_offset = ©p
int out_offset = (gridDim.x — 1 — blockIdx.x) * blockDim.x; // out_offset = 12;
int index in = in offset + threadIdx.x; // index_in = 0;
int index out = out offset + (blockDim.x — 1 — threadIdx.x); // index out = 15;

// Reverse contents in chunks of whole blocks
out[index out] = in[index_in];

For an example of 4 blocks, each composed of 4 threads:

WEESITR 0 1 2 3 4 5.6 7 8 .9 1011 12143 14 15|
H—/

H_/%_H_J
blockOffsét=4 blockOffset=8 block Cfset=12
— —

eliiieiigelllEINNET I 15 (14 (13 (12 11 10 9 (8 7 |6 (5|4 3 2|1 /|0

blockQ#sit=0

98

nvibia

A More sophisticated version
using shared mernory

Input addresses are linear and aligned = coalesced

WAV 0 1 2 2 4 5 0 7 o o 1011 213 1415

blockOffsat=4 blockOffset=8 blockOfset=12

blockO#sSt=0

(ocatvariaes) I8 415 67080 1011

Shared vemory [EERREEN ﬂlliﬂ 10 i mmm

Output addresses are linear and aligned = coalesced

NVIDIA.

GPU code for the ReverseArray kernel
(3) using raultiple block

global__ void reverseArray(int *in, int *out) {

int temp[BLOCK SIZE];
threadIdx.x + blockIdx.x * blockDim.x;
threadIdx.x;

int gindex
int lindex

temp[lindex] = in[gindex]; // Load the input vector into shared memory
syncthreads(); // (il)
temp[lindex] = temp[blockDim.x-lindex-1]; // Reverse local arrays within blocks (i2)
syncthreads(); // (1i3)
// Reverse contents in chunks of whole blocks (i4)
out[threadIdx.x + (((N/blockDim.x)-blockIdx.x-1) * blockDim.x)] = temp[lindex];

Dependency: In (i2), values written by a warp, have to be read (before) by another warp.
Solution: Use a temp2 [BLOCK_SIZE] array to store intermediate results (also in (i4)).

Improvement: (i3) is not required. Also, if you swap indices within temp[] and temp2[]
in (i2), then (i1) is not required (but (i3) becomes mandatory).

If you substitute all temp and temp2 instances by their equivalent expressions, you
converge into the previous CUDA version.

Every array element is accessed once, so using shared memory does not improve anyway!

100

nviDia.

V. 4. Matrix product

<SANVIDIA.

Typical CPU code written in C languag

(o

C=A*B.(P=M*Nin hands-on) £
All square matrices of size N * N.

Matrices are serialized into vectors to
simplify dynamic memory allocation.

void MxMonCPU (float* A, float* B, float* C, int N);
{
for (int i=0; i<N; i++)
for (int j=0; j<N; j++) Cc
{
float sum=0;
for (int k=0; k<N; k++)

{
float a = A[i*N + k];

NVIDIA.

CUDA version for the matrix product:

A draft ror the parallel code

void MxMonGPU (float* A, float* B, float* C, int N);
{

float sum=0;

int i, j;

i = threadIdx.x + blockIdx.x * blockDim.x;

j = threadIdx.y + blockIdx.y * blockDim.y;

for (int k=0; k<N; k++)

float a = A[i*N + k];
float b = B[k*N + j];
sum += a*b;

}

C[i*N + j] = sum;

NVIDIA|

03

float b = B[K*N + j]; =
sum += a*b;
}
C[i*N + j] = sum;
} N
CUDA version for "r er % produc
explaining parallelization
Each thread computes a single element of C.
Matrices A and B are loaded N times from video memory.

Blocks accomodate threads in groups of 1024 threads
(internal CUDA constraint in Fermi and Kepler). That way,
we may use 2D blocks composed of 32x32 threads each.

Grid WidthB WidthA WidthB
% """""" §§ HeightAll g y) | = X
DI R R R R R —'.
\ C HeightA A B
ol e —

% % % % MxMonGPU <<<dimGrid,dimBlock>>> (A, B, C, N);

> | |

NVIDIA| NVIDIA.

CUDA version for the matrix product: Using shared rnemory:
Analysis Version with tiling for A and B
Each thread requires 10 registers, so we can reach the - The 32x32 submatrix Cg,, computed by
maximum amount of parallelism in Kepler: each thread block uses tiles of 32x32
2 blocks of 1024 threads (32x32) on each SMX. (2x1024x10 = 20480 elements of A and B which are repeatedly
registers, which is lower than 65536 registers available). allocated on shared memory.
Problems: A and B are loaded only (N/32) times
Low arithmetic intensity. from global memory.
Demanding on memory bandwidth, which becomes the bottleneck. . Achievements:
Solution: Less demanding on
Use shared memory on each multiprocessor. memory bandwidth.
More arithmetic intensity. e

=2 Manuel Ujaldon - Nvidia CUDA Fellow = Manuel Ujaldon - Nvidia CUDA Fellow
Tiling: Implementation details A trick to avoid shared memory bank conflicts
We have to manage all tiles involved within a thread block: - Rationale:
Load in parallel (all threads contribute) the input tiles (A and B) from The shared memory is structured into 16 (pre-Fermi) or 32 banks.
global memory into shared memory. Tiles reuse the shared memory space. Threads within a block are numbered in column major order, that is,
__syncthreads() (to make sure we have loaded matrices before the x dimension is the fastest varying.

starting the computation). . . .
Compute all products and sums for C using tiles within shared memory. When using the regmar mdexmg scheme to shared

Each thread can now iterate independently on tile elements. memory a'rra'ys: As [thread_Idx : x] [FhreadIdx ° Y] !
__syncthreads () (to make sure that the computation with the tile is threads within a half-warp will be reading from the same
over before loading, in the same memory space within share memory, two column, that is, from the same bank in shared memory.
til f A and B in th xt iteration). .
new tiles of A-and B in the next iteration) ' However, using As [threadIdx.y] [threadIdx.x],
threads within a half-warp will be reading from the same row,
which implies reading from a different bank each.
- So, tiles store/access data transposed in shared memory.
ey Manuel Ujaldon - Nvidia CUDA Fellow | 2 Manuel Ujaldon - Nvidia CUDA Fellow

>

NVIDIA.

An example for solving conflicts
to banks in shared mermory

(0,0)(1,0) warp 0 (31,0)(0,0)(1,0) (31,0), —> Consecutive threads within a warp
0,1)(1,1) warp1 (31,1)I(0,1)(1,1) (31,1) differ in the first dimension.
2 0,2)(1,2 31,2) .
0202 vep? (120202 ¢ but codnsecuif:lvebpccl)smons of Irnemory
store data of a bidimensional matrix
Block (0,0) Block which differ in the second dimension:
a[0][o], a[o1r1y, afoirz2y, ...
(0,29)(1,29) warp 29 (31,29)[(0,29)(1,29) (31,29)
(0,30)(1,30) warp 30 (31,30)|(0,30)(1,30) (31,30) Itis | If thread (x,y) | If thread (x,y)
(0,31)(1,31) warp 31 (31,31)[(0,31)(1,31) (31,31) uses a[x][y], | uses a[yl[x],
(0,0)(1,0) warp0 (31,0)(0,0)(1,0) (31,0 ank (warp access to | warp access to
(0,1)(1,1) warpl (31,1)/(0,1)(1,1) (31,1 afol[o] 0 X X
(0,2)(1,2) warp2 (31,2)(0,2)(1,2) (31,2
a[0][1] 1 X
Block (0,1) Block a3 31 X
a[1][0] 0 X
(0,29)(1,29) warp 29 (31,29) (0,29)(1,29) (31,29 B3] 0 X
(0,30)(1,30) warp 30 (31,30)(0,30)(1,30) (31,30
(0,31)(1,31) warp 31 (31,31)[(0,31)(1,31) (31,31 l
,) 100% No
(mas bloques de 32 x 32 hilos) conflicts conflicts
kX Manuel Ujaldon - Nvidia CUDA Fellow

<

NVIDIA|

A comnpiler optimization: Loop unrolling

Without loop unrolling: Unrolling the loop:

__syncthreads () ;
// Compute the tile

. sum += As[tx] [0]*Bs[0] [ty]’
__syncthreads(); sum += As[tx] [1]*Bs[1][ty]’

sum += As[tx][2]*Bs[2] [ty];

// Compute the tile sum += As[tx][3]*Bs[3] [ty];

for (k=0; k<32; k++) sum += As[tx] [4]*Bs[4][ty]’

sum += As[tx] [k]*Bs[k] [ty]; sum += As[tx] [5]*Bs[5] [ty]’

sum += As[tx] [6]*Bs[6] [ty]’

__syncthreads () ; sum += As[tx][7]*Bs[7] [ty]’

} sum += As[tx] [8]*Bs[8] [ty]’
C[indexC] = sum;

sum += As[tx][31]*Bs[31] [ty]’
__syncthreads() ;

}

Tiling: The CUDA code for the GPU kernel

<

NVIDIA.

__global__ void MxMonGPU(float *A, float *B, float *C, int N)
{
int sum=0, tx, ty, i, Jj;

tx = threadIdx.x; ty = threadIdx.y;

i = tx + blockIdx.x * blockDim.x; j = ty + blockIdx.y * blockDim.y;
_ shared__ float As[32][32], float Bs[32][32];

// Traverse tiles of A and B required to compute the block submatrix for C
for (int tile=0; tile<(N/32); tile++)
{
// Load tiles (32x32) from A and B in parallel (and store them transposed)
As[ty][tx]= A[(i*N) + (ty+(tile*32))];
Bs[ty][tx]= B[((tx+(tile*32))*N) + j1;
__syncthreads();
// Compute results for the submatrix of C
for (int k=0; k<32; k++) // Data have to be read from tiles transposed too
sum += As[k][tx] * Bs[ty][k];
__syncthreads();

C[indexC] = sum;

>N Manuel Ujaldon - Nvidia CUDA Fellow

}
// Write all results for the block in parallel
C[i*N+j] = sum;
}
=2 Manuel Ujaldon - Nvidia CUDA Fellow
<
NVIDIA.

Performance on the G80 for tiling & unrolling

100
75
®
n
50 % Tiling only
(77 Ml Tiling & Unrolling
25
0
4x4 8x8 12x12 16x16
Tile size (32x32 unfeasible on G80 hardware)
>N Manuel Ujaldon - Nvidia CUDA Fellow =

S

NVIDIA.
CUDA Zone:
bl
[developer.nvidia.com/cuda-zone]
About CUDA Getting Started
All about the NVIDIA CUDA First steps for getting started in
parallel computing platform parallel computing
Learn more > Learn more >
Tools & Ecosystem Academic
From accelerated cloud Collaboration
appliances to profiling tools, a Partner with NVIDIA to advance
gold mine of information parallel computing education
T and research
Learn more >
VI B bl : h d t I CUDA Downloads Resources
. I Iog rap y an OO S Get the latest and greatest @ Materials and links especially
version of the CUDA Toolkit for GPU Computing
professionals and developers
NVIDIA Learn more > 114
i Manuel Ujaldon - Nvidia CUDA Fellow
- < <
Getting Started nvioial Tools & Ecosystem nvibia.

From accelerated cloud

m gold mine of information

First steps for getting started in
parallel computing

«

appliances to profiling tools, a

Learn more >

Optimized Libraries

Compiler Directives Programming Language

Accelerated
Solutions

GPUs are accelerating many

]

Numerical Analysis
Tools
Applications with high

GPU-Accelerated
Libraries

Adding acceleration to your

Drop-in, Industry standard
libraries replace MKL, IPP,
FFTW and other widely used
libraries. Some feature

Easy: simply insert hints in
your code
Open: run on either CPU or

Develop your own parallel
applications and libraries
using a programming

application can be as easy as
calling a library function.

applications across numerous
industries.

arithmetic density can enjoy
amazing GPU acceleration.

Learn more > Learn more > Learn more >

automatic multi-GPU scaling,

Get Started with GPU-
Accelerated Libraries

> |

nvibia.

GPU language you already know.
Powerful: tap into the power of)
L X Get Started With:
GPUs within minutes
e C/C++using CUDAC
e Fortran using CUDA
Fortran

e Python

Get Started with Directives

115
Manuel Ujaldon - Nvidia CUDA Fellow

<

nviDia.

@ GPU acceleration can be
accessed from most popular

programming languages.

. Language and APIs

Learn more >

: 4
~

Key Technologies
Learn more about parallel
computing technologies and
architectures.

Performance
Analysis Tools

Find the best solutions for
analyzing your application’s

performance profile.

Learn more >

Cluster Management
Managing your GPU cluster will
help achieve maxium
performance.

Debugging Solutions

Powerful tools can help debug
complex parallel applications in
intuitive ways.

Learn more >

Job Scheduling

Scheduling jobs on your GPU
Cluster can be simple and
intuitive.

116
Manuel Ujaldon - Nvidia CUDA Fellow

Academic

<

CUDA Downloads

NVIDIA | NVIDIA.
Collaboration
) Get the latest and greatest
Partner with NVIDIA to advance
parallel computing education version of the CUDA Toolkit
and research
Academic Programs GPU Centers CUDA Fellows
- S 3 . Version Netorkinstaiar Loct Packag natr Rttt
All about our investment in A showcase of all our GPU Our partners who are fome oo o o e Fedon 21 Caming o Gomng o CamingSoon
. "
academia through our four core Centers - check for your committed to leading the use Opensuse 192 Rom el fom tos) N 1081
peners ; CUDA 7 Downloads B e
programs. institution. and adoption of CUDA.
weL? oo om 1) ninscen
Cenos7
Learn more > Learn more > Learn more > Check out el - - -
eck ou
+ CUDA7 Performance Report and Webinar Recording comost
» An informative webinar by Ujval Kapasi, NVIDIA's CUDA Product Manager CUDA 7 Features and Overview sesiz FPM) RPM 1100 N Lo
« The Power of C4+11in CUDA, anothertechnical blog o Parallel Foral. sies s o ok o 1001 ool
Educators Network Curriculum & Additional Resources Ifyou find any issues please file 2 bug (requires membership of the CUDA Registered Developer Prograrml SoantS 10000 Nisce)
. [oes el o 05001 i)
A collaborative area for those Teachlng Resources Materials and links especially e ke - -
. . Please Note: There is a recommended patch for CUDA 7.0 which resolves an issue in the cuFFT library that can lead to incorrect resaults for certain inputs
looking to educate others on Hands-on exercises and access for academia. izes less thanor equalto 1920 any dimension when cuffSetStreami) s passed a non-blocking sream (e, one created using the st o el el el
massively parallel to GPUs for your parallel Learn mores cudaStreamNonBlocking flag of the CUDA Runtime AP or the CU_STREAM_NON_BLOCKING flag of the CUDA Driver API) - RUN tme)
arrrpuen e
programming. programming courses.
.ﬂ!b Linux x86 Linux POWERS Mac 0SX Documentation
Learn more > Learn more > e ot witors unccss Camrron) s
Version Network nstaller Local Installer
£nd User License Agreemen Veson Neterklntaier Loca Package ot Rttt
Windows 8.1 EXE (8.0MB) EXE (939MB] onine D . Ubuntu 14.10 (x8) (s88MB]
Online Documentation
Windows 7 Ubuntu 14.04 (3K8) (s88M8]
Win Server 2012 R2 verien
Win Server 2008 R2 SPU Deplomant R o o (el
arTPuen e
CcuFFT Patch 21P (52MB)
Windows Getting Started Guide vt et >
Vesion Network st Locatinttr
Windows FAQ 09 10.4m8) KO (977M8)
010
:Where i the notebook installer? e e
117 A: Previous releases of the CUDA Toolkit had separate installation packages for notebook and desktop 118
S 5 = S 3 =
>N Manuel Ujaldon - Nvidia CUDA Fellow >N Manuel Ujaldon - Nvidia CUDA Fellow

S S

CUDA books: Frorn 2007 to 2015

Resources

Materials and links especially for GPU
Computing professionals and developers

Docs and References

Education & Training

- GPU Gems series: 1, 2, 3 [developer.nvidia.com/gpugems]

« CUDA Toolkit « Online Documentation « Training Materials
« CUDA Downloads o Architecture References o GTC Express Webinars
« CUDA Archives « GTC Presentations
o CUDA Developer Home « Udacity -Free Courses
« CUDA Developer Sign Up « Coursera
BY EXAMPLE
33
CUDA Powered Processors Communi Keep Informed .
o Tesla « GPU Computing Forums o Twitter Programming Massivi
« Quadro « Meetups in Your City « Facebook A e
« GeForce « Parallel Forall Blog o CUDA Newsletter
« GRID « YouTube o Parallel Forall - RSS feed N
o Tegra « Stackoverflow Abr'11
« gpgpu.org

The

CUDA

HANDBOOK

gpucomputing.net

s

PROGRAMMING

Contact Us

Professional

« Tools & Ecosystem « Industry Domains « Contact Form i A C
« Accelerated Libraries « Industry Applications « Submit Bugs R BRRLSHERT p7 Programming
« Programming Language « Industry Success Stories « View Your Submitted Bugs - e

« CUDA Spotlights « Forums

Nov'11l Dic'12 Jun'13

Sep'14 120
Nvidia CUDA Fellow

« Academic Programs

Oct'13
o]

vibia. Manuel Ujaldot

Manuel Ujaldon - Nvidia CUDA Fellow

Guides for developers and rnore documents

<

NVIDIA|

>

nvibia_

- Getting started with CUDA C: Programmers guide.
[docs.nvidia.com/cuda/cuda-c-programming-guide]
> For tough programmers: The best practices guide.
> [docs.nvidia.com/cuda/cuda-c-best-practices-guide]
' The root web collecting all CUDA-related documents:

> [docs.nvidia.com/cuda]
> where we can find, additional guides for:
Installing CUDA on Linux, MacOS and Windows.
Optimize and improve CUDA programs on Kepler and Maxwell GPUs.
Check the CUDA API syntax (runtime, driver and math).
Learn to use libraries like cuBLAS, cuFFT, cuRAND, cuSPARSE, ...

Deal with basic tools (compiler, debugger, profiler).
Manuel Ujaldon - Nvidia CUDA Fellow

121

©

Courses on-line (free access)

>

NVIDIA|

*More than 50.000 registered users from 127 countries over
the last 6 months. An opportunity to learn from CUDA masters:
' Prof. Wen-Mei Hwu (Univ. of Illinois).
- Prof. John Owens (Univ. of California at Davis).
- Dr. David Luebke (Nvidia Research).
> There are two basic options, both recommended:

'Introduction to parallel programming: U
-7 units of 3 hours = 21 hours. UDACITY
'Provides high-end GPUs to carry out the proposed assignments.

Heterogeneous ParaIIeI Programming (at UIUC): coursera
9 weeks, each with classes (20’ video), quizzes and programming assignments.

[https://www.coursera.org/course/hetero

123

>R Manuel Ujaldon - Nvidia CUDA Fellow

NVIDIA.

Choices to accelerate your applications on
GPUs and rnaterial for teaching CUDA

> [developer.nvidia.com/cuda-education-training] (also
available from CUDA Zone -> Resources -> Training materials)
CUDA Education & Training avermes

Downloads

CUDA GPUs

Accelerate Your Appllcatlons

ctions, vide tutorials and code samples.

NVIDIA Nsight Visual Studio Edition

Get Started - Parallel Computing
OpenACC Directives. Tools & Ecosystem

cuDAFAQ

weets by @GPUComputing ¥ Follow

Teaching Resources

Get the latest educational slides, hands-on exercises and access to GPUs for your

Sign-up Today!
122

= Manuel Ujaldon - Nvidia CUDA Fellow

nvibia.

(S |

NVIDIA.

Tutorials about C/C++, Fortran and Python

You have to register on the Amazon EC2 services available
on the Web (cloud computing): [nvidia.qwiklab.com]
~ They are usually sessions of 90 minutes.
> Only a Web browser and SSH client are required.
- Some tutorials are free, other require tokens of $29.99.

v C/C++Labs @

NVIDIA OpenACC NVIDIA SANVIDIA
CUDA [—— CUDA CUDA

v Fortran Labs @

 Python Labs @

[——

NVIDIA. NVIDIA
CUDA CUDA

124

>} Manuel Ujaldon - Nvidia CUDA Fellow

5>

NVIDIA|

Talks and webinars

‘Talks recorded at GTC (Graphics Technology Conference):
383 talks from 2013.
More than 500 available from 2014 and 2015.

> [www.gputechconf.com/gtcnew/on-demand-gtc.php]
*Webinars about GPU computing:

- List of past talks on video (mp4/wmv) and slides (PDF).
List of incoming on-line talks to be enrolled.

[developer.nvidia.com/gpu-computing-webinars]
'CUDACasts:
> [devblogs.nvidia.com/parallelforall/category/cudacasts]

125
>R Manuel Ujaldon - Nvidia CUDA Fellow

5>

NVIDIA|

Developers (2)

. List of CUDA-enabled GPUs:

[developer.nvidia.com/cuda-gpus

g CUDA-Enabled Tesla Products
g CUDA-Enabled Quadro Products
—
Gtl CUDA-Enabled NVS Products
~
el CUDA-Enabled GeForce Products

!ﬂ CUDA-Enabled TEGRA /Jetson Products

> And a last tool for tuning code:
CUDA Occupancy Calculator

[developer.download.nvidia.com/compute/cuda/
CUDA_Occupancy_calculator.xls

127

>R Manuel Ujaldon - Nvidia CUDA Fellow

NVIDIA.

Developers

- Sign up as a registered developer:
[www.nvidia.com/paralleldeveloper]

Access to exclusive developer downloads.
Exclusive access to pre-release CUDA installers like CUDA 8.0.
Exclusive activities an special offers.

- Meeting point with many other developers:
[www.gpucomputing.net]

- GPU news and events:
[www.gpgpu.org]

> Technical questions on-line:
NVIDIA Developer Forums: [devtalk.nvidia.com]

Search or ask on: [stackoverflow.com/tags/cuda] w6
= Manuel Ujaldon - Nvidia CUDA Fellow
Future developments

'Nvidia’s blog contains articles unveiling future technology
to be used within CUDA. It is the most reliable source about
what's next (subscription recommended):

[devblogs.nvidia.com/parallelforall]

'Some recommended articles:
“Getting Started with OpenACC”, by Jeff Larkin.
“New Features in CUDA 7.5”, by Mark Harris.
“*CUDA Dynamic Parallelism API and Principles”, by Andrew Adinetz.

“"NVLINK, Pascal and Stacked Memory: Feeding the Appetite for Big
Data”, by Denis Foley.

“CUDA Pro Tip: Increase Application Performance with NVIDIA GPU
Boost”, by Mark Harris.

2. Manuel Ujaldon - Nvidia CUDA Fellow

