

Talk outline [30 slides] 1. Optimizing power on GPUs [8 slides] 2. Dynamic parallelism [6] 3. Hyper-Q [6] 4. Unified memory [8] 5. NV Link [1] 6. Summary [1]

Energy shopping list: Past, present, future

Processor technology Voltage (nominal)	40 nm. (2005) 0.9 v.	10 nm. (2020) 0.7 v.	Overall reduction factor
DFMA (double fused multiply-add) energy	50 pJ.	7.6 pJ.	6.57 x
64 bits 8 KB. SRAM read (cache memory)	14 pJ.	2.1 pJ.	6.66 x
Wire energy (256 bits wide, 10 mm. long)	310 рЈ.	174.0 pJ.	1.78 x

Memory technology	45 nm.	16 nm.	Overall
DRAM interface pin bandwidth	4 Gbps.	50 Gbps.	reduction factor
DRAM interface energy (read/write bandwidth)	20-30 pJ/bit	2 pJ/bit	10-15 x
DRAM access energy (latency)	8-15 pJ/bit	2.5 pJ/bit	3-6 x

A regular floating-point operation requires a minimum of 4 pJ.

Source: Vogelsang [Micro 2010], Keckler [Micro2011]

Every application has a different behaviour regarding power consumption

Here we see the average power (watts) on a Tesla K20X for a set of popular applications within the HPC field:

- Allows to speed-up the GPU clock up to 17% if the power required by an application is low.
- The base clock will be restored if we exceed 235 W.
- We can set up a persistent mode which keep values permanently, or another one for a single run.

Those applications which are less power hungry can benefit from a higher clock rate

For the Tesla K40 case, 3 clocks are defined, 8.7% apart.

GPU Boost compared to other approaches

It is better a stationary state for the frequency to avoid thermal stress and improve reliability.

Automatic clock switching

Deterministic Clocks

	Other vendors	Tesla K40
Default	Boost	Base
Preset options	Lock to base clock	3 levels: Base, Boost1 o Boost2
Boost interface	Control panel	Shell command: nv-smi
Target duration for boosts	Roughly 50% of run-time	100% of workload run time

Manuel Ujaldon - Nvidia CUDA I

Example: Query the clock in use

onvidia-smi -q -d CLOCK -id=0000:86:00.0

Timestamp	: Wed Jan 29 13:35:58 2014
Driver Version	: 319.37
Attached GPUs	: 5
GPU 0000:86:00.0	
Clocks	
Graphics	: 875 MHz
SM	: 875 MHz
Memory	: 3004 MHz
Applications Clocks	
Graphics	: 875 MHz
Memory	: 3004 MHz
Default Applications Clocks	
Graphics	: 745 MHz
Memory	: 3004 MHz
Max Clocks	
Graphics	: 875 MHz
SM	: 875 MHz
Memory	: 3004 MHz

Command	Effect	
nvidia-smi -q -d SUPPORTED_CLOCKS	View the clocks supported by our GPU	
nvidia-smi -ac <mem clock,<br="">Graphics clock></mem>	Set one of the supported clocks	
nvidia-smi -pm 1	Enables persistent mode: The clock settings are preserved after restarting the system or driver	
nvidia-smi -pm 0	Enables non-persistent mode: Clock settings revert to base clocks after restarting the system or driver	
nvidia-smi -q -d CLOCK	Query the clock in use	
nvidia-smi -rac	Reset clocks back to the base clock	
nvidia-smi -acp 0	Allow non-root users to change clock rates	

The way we did things in the pre-Kepler era: The GPU was a slave for the CPU High data bandwidth for communications: External: More than 10 GB/s (PCI-express 3). Internal: More than 100 GB/s (GDDR5 video memory and 384 bits, which is like a six channel CPU architecture). GPU Operation 1 Operation 2 Operation 3

Warnings when using dynamic parallelism

- It is a much more powerful mechanism than it suggests from its simplicity in the code. However...
- What we write within a CUDA kernel is replicated for **all** threads. Therefore, a kernel call will produce millions of launches if it is not used within an IF statement (which, for example, limits the launch to a single one from thread 0).
- If a father block launches sons, can they use the shared memory of their father?
 - No. It would be easy to implement in hardware, but very complex for the programmer to guarantee the code correctness (avoid race conditions).

Manuel Ujaldon - Nvidia CUDA Fellow

- In Fermi, several CPU processes can send thread blocks to the same GPU, but the concurrent execution of kernels was severely limited by hardware constraints.
- In Kepler, we can execute simultaneously up to 32 kernels launched from different:
 - MPI processes, CPU threads (POSIX threads) or CUDA streams.
- This increments the % of temporal occupancy on the GPU.

DVIDIA

Summary

- Kepler contributes to irregular computing. Now, more applications and domains can adopt CUDA. Focus: Functionality.
- Maxwell simplifies the GPU model to reduce power consumption and programming effort. Focus: Low power and memory friendly.
- **NV-Link** helps to communicate CPUs and GPUs on a transition phase towards SoC (System-on-Chip), where all main components of a computer are integrated on a single chip: CPU, GPU, SRAM, DRAM and all controllers.

e-mail: ujaldon@uma.es

Phone: +34 952 13 28 24.

Web page: http://manuel.ujaldon.es (english/spanish versions available).

Or, more specifically on GPUs, visit my web page as Nvidia CUDA Fellow:

http://research.nvidia.com/users/manuel-ujaldon

- | <

Manuel Uialdon - Nvidia CUDA Fellow

Manuel Utaldon - Nvidia CUDA Fellov