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Abstract  

A numerical model (MOODY) for the study of the dynamics of cables is presented in Palm et al. (2013), which was developed 

for the design of mooring systems for floating wave energy converters. But how does it behave when it is employed together 

with the tools used to model floating bodies? To answer this question, MOODY was coupled to a linear potential theory code 

and to a computational fluid dynamics code (OpenFOAM), to model small scale experiments with a moored buoy in linear 

waves. The experiments are well reproduced in the simulations, with the exception of second order effects when linear 

potential theory is used and of the small overestimation of the surge drift when computational fluid dynamics is used. The 

results suggest that MOODY can be used to successfully model moored floating wave energy converters.  

Keywords: Mooring, wave energy converter, hp-finite element, numerical simulation, cable. 

Resumo  

Palm et al. (2013) apresentam um modelo numérico (MOODY) desenvolvido para o estudo da dinâmica de cabos de 

amarrações de conversores flutuantes de energia das ondas. Mas como é que se comporta o modelo quando é aplicado em 

conjunto com as ferramentas utilizadas para simular corpos flutuantes? Para responder a esta questão, foi feito o acoplamento 

do MOODY a um código de teoria potencial linear e a um código de mecânica dos fluidos computacional (OpenFOAM) para 

recriar experiências em modelo reduzido com uma bóia amarrada sujeita a ondas lineares. As experiências são bem 

reproduzidas nas simulações, à excepção dos efeitos de segunda ordem quando é utilizada a teoria potencial linear e uma 

ligeira sobrestimação da deriva quando é utilizada mecânica dos fluidos computacional. Os resultados indicam que o MOODY 

pode ser utilizado para modelar com sucesso o sistema de amarração de conversores flutuantes de energia das ondas. 

Palavras-chave: Amarração, conversor de energia das ondas, elemento finito hp, simulação numérica, cabo. 

 

1. Introduction 

With the objective of providing tools to study mooring 

systems for wave energy converters, a numerical model for 

the dynamics of cables, MOODY (Palm et al., 2013) was 

developed.  MOODY extends the higher-order finite 

element formulation of (Montano et al., 2007) by allowing 

the tension to vary within each element and by using a fully 

discontinuous formulation, the Local Discontinuous 

Galerkin formulation (LDG) (Cockburn and Shu, 2001). 

It was needed to know how would MOODY perform when 

applied to realistic situations together with the usual “tools 

of the trade” for simulation of moored floating bodies.  

 

For this reason, two approaches to simulate floating bodies 

were selected: the simple, industry standard, linear 

potential theory and the high-end, intensive, computational 

fluid dynamics (CFD).  

An in-house code was used for simulations with linear 

potential theory and the open source package OpenFOAM 

was used for simulations with computational fluid 

dynamics. MOODY is coupled to each of the codes to 

enable a complete simulation of a moored buoy floating in 

water.  

Linear potential theory is a fast and reliable approach for 

small amplitude motions, but lacks second order effects that 

may be important.  
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Computational fluid dynamics is computationally 

intensive, but provides the opportunity to study non-linear 

phenomena, where linear potential theory breaks down. 

The simulations recreated small scale laboratory 

experiments with linear waves. This wave regime is similar 

to the one where wave energy devices are expected to 

operate. The behaviour of MOODY under “operating 

conditions” for wave energy converters can, therefore, be 

assessed. 

In this study it is assumed that the cables do not have 

bending stiffness, which may be important when the 

tension is low. 

The results show that MOODY can be used in the study of 

moored structures. The motions and tensions measured in 

the laboratory experiments are reasonably well reproduced 

using the numerical model.  There are limitations caused by 

the fact that linear potential theory doesn’t account for 

second order drift forces (underestimating surge motions) 

and by the large fluctuations in the air phase in the CFD 

simulations (overestimating surge motions). 

A deeper coverage of the small scale experiments and the 

simulations using linear potential theory can be found in 

Paredes et al. (2013) and of those using computational fluid 

dynamics in Palm et al. (2013). 

2. Governing Equations of Moored Bodies 

2.1. Flexible cable  dynamics 

The dynamics of cables are simulated using the equation of 
flexible cables, in a non-dimensional form as presented in 
Lindahl (1985), 
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where   is the non-dimensional time,   is the non-

dimensional position vector,   is the non-dimensional 

curvilinear abscissa along the cable (unstretched),   is the 

mass per unit length of the cable (unstretched),   is the 

tension,   is the strain,   is the non-dimensional vector of 

the external forces acting on the cable,    is a characteristic 

length and    is a characteristic time. The characteristic 

length    is chosen to be the length of the cable and the 

characteristic time    is the time it takes for a shock wave to 

propagate along the cable. The celerity of a shock wave  , 

for a thin cable is given by  

l

K
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m
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where   is the stiffness of the cable.   

The position vector   and the abscissa along the cable   are 

made non-dimensional by scaling them with    and the 

time   is made non-dimensional by scaling it with    .  

The tension in the cable is determined using Hooke’s law, 

Eq. [3] where the extension is computed using the following 

definition 
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To solve Eq.[1], MOODY uses hp-finite elements with a 

modified version of the Local Discontinue Galerkin 

formulation. MOODY is described in detail in Palm et al. 

(2013) and for brevity won’t be described here. 

The external forces acting on a submerged cable are the 

buoyancy, the weight, the hydrodynamic forces and the 

ground interaction forces. 

The weight, the buoyancy and the hydrodynamic forces are 

modelled following the non-dimensionalizations presented 

in Lindahl (1985): the weight and the buoyancy are taken 

together as the submerged weight, Eq. [5], and the 

hydrodynamic forces are split into the inertia force, Eq. [6], 

the tangential drag force, Eq. [7] and the normal drag force, 

Eq. [8], using Morison’s formula, 

2

c w

c c

  c
b

t

L

 



 
  

 
f g   [5] 

   w
rel rel

l

· 1m m

A
C

m


  f a a t t ò   [6] 

   
2w c

t t rel

l

1
· 1

2
d d

dL
C

m


 f v t t ò   [7] 

      w c
n n rel rel rel rel

l

1
· · 1

2
d d

dL
C

m


   f v v t t v v t t ò  [8] 

where      is the mass density of the fluid,    is the mass 

density of the cable,    is the submerged weight of the cable,  

 is the cross sectional area of the cable,   is the acceleration 

of gravity,   and    are the added mass force and added 

mass coefficient,     and     are the tangential drag force 

and the tangential drag coefficient,     and     are the 

normal drag force and the normal drag coefficient,      and 

     are, respectively, the relative non-dimensional velocity 

and non-dimensional acceleration between the cable and 

the water, Eqs. [9] and [10],    is the nominal diameter of 

the cable and    is the tangential vector to the cable, Eq. [11]. 
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where    and     represent the non-dimensional water 

velocity and acceleration.  

The ground is modelled as a bi-linear spring-damper 

material in the normal direction and as surface with 

Coulomb friction in the tangential direction.  In the normal 

direction, when the cable is settling on the ground, both 

stiffness and damping forces on the cable; when the cable is 

lifting, only the stiffness force is applied. This formulation 

prevents bouncing while allowing free lifting. In the 

horizontal direction, the ground applies a Coulomb friction 

force that is ramped from zero to its maximum value when 

the tangential velocity reaches a specified value. 
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2.2. Floating body dynamics 

2.2.1. Linear Potential Theory 

In the first simulation, the dynamics of the floating body are 

computed using linear potential theory. This approach 

models a floating body in waves as a spring-mass-damper 

system, 

    M A x Bx Cx F   [12] 

where   is the generalised mass matrix,   is the added 

inertia matrix,   is the radiation damping matrix,   is the 

hydrostatic stiffness matrix,  ̈,  ̇ and   are, respectively, the 

acceleration, velocity and position vectors in the six degrees 

of freedom and   is the vector sum of all external forces and 

moments acting on the body, including wave induced 

forces, mooring forces, viscous drag and power take-off. 

The buoy dynamics are solved in their dimensional form.  

Wave induced forces and moments are also computed 

following the linear potential theory formulations, given by 
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where    is the vector of wave induced forces and moments,  

  is the vector of the wave force coefficients,   is the water 

surface elevation at the mean position of the floating body, 

  is the wave period,   is the time instant and   is the vector 

of the phase delay of the forces and moments relative to the 

phase of the wave.  Eq.  [12] is time-stepped via a leapfrog 

scheme. 

2.2.2. Computational Fluid Dynamics 

In the CFD simulations, the Euler equations, Eq.[14], are 

solved in the fluid domain (water and air) around the buoy, 
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where   is the velocity of the fluid,    is the velocity grid 

used to discretise the fluid domain,   is the pressure and    

is an external volume force.  

The water pressure is integrated over the wetted surface of 

the hull of the buoy, to obtain the forces and moments 

around the centre of gravity. This takes into account all 

forces from transient effects such as overtopping green 

water or breaking waves.  

 

To capture the free surface at the at the air-water interface, 

the Volume of Fluid method is used. This method computes 

the effective density   and the effective viscosity   of a fluid 

as 
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where   is the volume fraction of water in the discretization 

element,    is the air density,    is the air viscosity and    is 

the water viscosity. For wave generation and absorption the 

waves2Foam package is used (Jacobsen et al., 2012). Separate 

relaxation zones are used for the inlet and the outlet 

conditions. 

2.3. Coupling 

MOODY is a stand-alone code, but it has an interface that 

allows it to send and receive data to and from other codes. 

In the simulations presented in this work, the floating body 

solver gets the tension force on the cables from MOODY 

and computes the dynamics of the buoy. It then sends the 

new position of the attachment points of the cable to 

MOODY which, in turn, computes the evolution of the 

cable tension between the previous and the current position 

of the attachment. The tension force can, therefore, be 

expressed as the following function, 

 1 1 1 1 1

mo , , , , , ,n n n n n n n nf t t     f p p r r r  [16] 

in which    
  is the mooring force applied on the floating 

body,    and     are the positions of the attachment point 

at the current,   , and previous,     , time step, and     , 

 ̇   , and  ̈   , are, respectively, the position, velocity and 

acceleration of the cable at the previous time step. The time 

steps required by MOODY and by the floating body solver 

aren’t necessarily the same. If the time-step in MOODY is 

smaller than that of the floating body solver, MOODY 

interpolates the position of the attachment point between 

the previous and the current position.  

3. Numerical Simulations of Moored WECs 

3.1. Case description 

The simulations presented here aim to recreate small scale 

experiments in a wave tank. The experimental setup is 

shown in Figure 1. 

 

Figure 1. Experimental arrangement modelled in the numerical simulations. A cylindrical buoy moored by a catenary chain on the seaward 
side and by a nylon string connected to a linear spring on the leeward side. The moorings are parallel to the wave direction, which allows the 
setup to be reduced to a 2-dimensional problem. 
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The buoy was a vertical cylinder, with a mass of 35.28±0.05 

kg and an inertia around the centre of floatation of 

0.852±0.165 kg∙m2 In Figure 2 are represented the 

dimensions of the buoy, the position of the attachment 

points of the cables and the locations of the centre of gravity 

and of the centre of buoyancy. The position of centre of 

mass and the inertia were determined following the method 

described in Chakrabarti (1994). 

Waves were generated travelling in a direction parallel to 

the plane of the mooring system. In this situation, the setup 

can be reduced to a 2-dimensional problem with three 

degrees of freedom: surge, heave and pitch.  

 

Figure 2. Detailed geometry of the buoy used in the experimental 
tests and modelled in the numerical simulations. Cb marks the 
position of the centre of buoyancy and Cg marks the position of the 
centre of gravity. Also represented is the placement of the load cell 
used to measure the tension in the seaward chain catenary and the 
position of the attachments of the mooring cables to the buoy. 

The chain links were      mm long,     mm wide and 

  mm thick. The dry weight per unit length of the chain 

was       N/m and its submerged weight per unit length 

was       N/m. 

The spring was installed at the absorbing beach of the tank 

in the vertical position, so that its weight wouldn’t interfere 

in the shape and tension of the nylon string.  

The stiffness of the spring was      N/m.  In the rest 

position of the buoy, the elongation of the spring was       
m (subtracted the elongation caused by the weight of the 

spring), yielding a pre-tension of     N.  

The nylon string had a negligible mass. It passed under a 

pulley so that it could be attached vertically to the spring, 

Figure 1. 

In experimental tests, it was recorded the rigid body 

motions of the buoy, the tension at the fairlead end of the 

chain using an in-line submersible load cell, Figure 2,  and 

the instantaneous water surface level at a point   m to the 

side of the rest position of buoy. This data was compared 

with the results of the simulations. 

For brevity, out of all the conditions tested, the results for a 

regular wave of period         and height           are 

shown as an example in this article. 

3.2. Mooring simulations 

The chain was discretised using    elements, with     

degree polynomials of the Legendre type, yielding a total 

number of degrees of freedom of   . The time step used in 

the cable simulation was        s. 

Since chains cannot be compressed, a bilinear stress-strain 

relation for the chain was used, allowing tension, but not 

allowing compression.  

The stiffness, the mass coefficient and the drag coefficients 

of the chain are presented in Table 1. These coefficients 

were taken from Lindahl (1985), where a set of experiments 

using a chain with dimensions similar to those used in this 

work it is described.  

Table 1. Parameters used to model the chain (Lindahl, 1985): 
 K – stiffness; Cdt – Tangential drag coefficient; Cdn – Normal drag 
coefficient; Cm – Added mass coefficient. 

PARAMETER VALUE 

K 10 000 N/m 

Cdt 0.5 

Cdn 2.5 

Cm 0.4129 
 

For the non-dimensionalisation, the characteristic length    
was the length of the chain (     m) and the characteristic 

time was        s. I 

n the computation of the hydrodynamic forces acting on the 

chain, the nominal diameter used for the chain was        
m, determined as the diameter of a uniform cable of the 

same material as the chain (steel, with          
kg/m3), 

which would have the same mass per unit length. 

The simulations using this discretisation are considered to 

be grid independent as the differences in the computed 

results using     and     degree polynomials with varying 

number of elements were negligible. 

Like the chain, because the spring-string leg cannot go into 

compression, it was modelled as a bilinear material: it can 

stretch infinitely in the seaward direction, but will go slack 

for horizontal displacements larger than      m in the 

leeward direction. Because the nylon string has a small 

mass and is almost horizontal when in tension (the angle to 

the horizontal is less than two degrees), the force applied by 

the nylon string on the buoy is assumed to be horizontal at 

all times. 

Some simplifying assumptions had to be made when using 

linear potential theory. 

As most of the chain catenary was hanging over the central 

pit (see Figure 1), in the simulation of the chain dynamics, 

the water depth used was 1.11 m. For the computation of 

the hydrodynamic forces acting on the chain, it is assumed 

that the water has neither velocity nor acceleration. 

The added mass, radiation damping and wave exciting 

force coefficients for the linear simulations were determined 

using the formulation presented by Johansson (1986), for a 

cylinder oscillating in finite water depth. The coefficients 

are presented in Table 2. 

In contrast to the assumptions of the formulations of 

Johansson (1986), where the bottom is assumed to be 

horizontal with a constant depth, there were two distinct 

water depths in the experimental setup.  

 

Nylon

string
Load cell

Mooring

chain

Buoy

0
.0

2
 m

Cg: 0.108 mCb: 0.09 m
Cf: 0.18 m

0
.4

0
 m

0.50 m
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Since the water depth under the buoy was     m, this was 

the value used in the computation of the coefficients,  

Table 2. The density of water was assumed to be         
kg/m3. 

Table 2. Hydrodynamic coefficients of the cylindrical buoy. Aij – 
Added mass. Bij – Radiation damping. Xi – Excitation force 
coefficient. δi – phase delay.  S – Surge. H – Heave. P – Pitch. SP – 
Couple surge-pitch. 

 Aij Bij Xi δi (rad) 

S 23.92 kg 20.82 kg/s 963.8 N/m 1.501 

H 27.05 kg 38.09 kg/s 921.8 N/m 0.206 

P 0.2581kg.m2 0.01974 kg.m2/s 29.68 N −1.641 

SP 1.137 kg.m 0.6410  kg.m/s - - 

 

The time step used for the buoy dynamics was       s in 

both codes; however, OpenFOAM has an automated time 

step size based on the Courant number which in practice 

decreased the time step to around       s. 

4. Results 

4.1. Linear Potential Theory 

In Figure 3 are presented the tension at the attachment 

point of the chain and the motions of the centre of floatation 

of the buoy in the experiments and in the numerical 

simulations, for a regular wave with period       s and 

height         m. 

The heave and pitch motions are correctly modelled, since 

both the amplitude and the mean oscillating position agree 

with the measurements. 

The surge amplitude is well determined, but the mean 

surge position is underestimated (in the simulations it is 

close to the static position of the buoy while in the 

experiments the buoy is displaced by about        m).  

The tension is well captured, meaning that the maximum 

value and the general shape of the wave cycle are 

reproduced in the simulations. Details such as the small 

indentation in tension at the end of the rising leg are 

reproduced in the numerical simulations. After the peak of 

the tension cycle, the numerically determined tension has a 

faster decrease rate than the measured one, for about half of 

the decrease leg.  

 

Figure 3. Results of the numerical simulations using linear potential theory. The motion plots are computed for the centre of floatation. 
Computed values for heave and pitch agree well with the measurements. In the surge motion, there is an offset in the measured mean position 
that is not reproduced in the simulations. As for the tension, although the numerical results are noisier than the measurements, the maximum 
value and the shape of the tension cycle are reasonably well captured. 

 

Figure 1. Results of the numerical simulations using linear potential theory. The motion plots are computed for the centre of 
floatation. Computed values for heave and pitch agree well with the measurements. In the surge motion, there is an offset in the 
measured mean position that is not reproduced in the simulations. As for the tension, although the numerical results are noisier 
than the measurements, the maximum value and the shape of the tension cycle are reasonably well captured. 
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Figure 4. Results of the numerical simulations using CFD. The motion plots are computed for the centre of floatation. The computed motions 
agree well with the measurements, even though the phase offset is more significant. The surge motion is determined with greater accuracy 
than with linear potential theory. The tension force is computed without using filters, so the noise level is higher than in the simulation with 
potential theory. The computed tension has a higher amplitude than the measured tension, but there are uncertainties in the measured values. 

4.2. CFD simulations 

The results from the CFD simulations are presented in 

Figure 4.  

The motion amplitudes are reasonably well determined. 

Heave and pitch havesmaller amplitudes than in the 

experiments, but surge has a larger amplitude. There are 

small phase offsets in all the motions. 

The numerically determined tension is around    N higher 

than the measured one, but the shape of the cycle is well 

recreated. 

Even though the mean surge position in the CFD 

simulations isn’t the same as in the experiments (      m 

larger), it is better determined than in the simulations using 

linear potential theory. The amplitude of the surge motion 

is around      m larger in the simulations than in the 

experiments. 

The pitch amplitude is around        degrees smaller in the 

simulations than in the experiments. 

When the tension is close to zero, the noise level is higher 

than in the simulations using linear potential theory and the 

noise increases sharply when the tension rises.  

 

There is also a spike just before the small indentation on the 

tension crest. In the CFD simulations, the exponential filters 

used in the simulations with linear potential theory weren’t 

used. This is a numerical artifact that should not seriously 

affect the buoy frequency response, due to its highly 

transient behaviour. 

5. Discussion 

In the simulations using linear potential theory, the 

difference between the measured and the computed mean 

position of surge was caused by the second order wave drift 

forces that displaced the buoy from its mean position in the 

experiments.  

These drift forces aren’t modelled in the first order 

formulation of linear potential theory. As such, the second 

order drift isn’t reproduced in the simulation and the 

residual drift in surge is caused by the surge damping and 

the pitch-surge coupling.  

As an example of the effect of the drift forces, in Table 3 are 

presented the values of the measured surge drift, the 

horizontal force required to generate it and the resulting 

tension in the chain. 

 

Figure 1. Results of the numerical simulations using CFD. The motion plots are computed for the centre of floatation. The computed motions 
agree well with the measurements, even though the phase offset is more significant. The surge motion is determined with greater accuracy than 
with linear potential theory. The tension force is computed without using filters, so the noise level is higher than in the simulation with potential 
theory. The computed tension has a higher amplitude than the measured tension, but there are uncertainties in the measured values. 
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Table 3. The effects of second order drift forces. The drift forces 
displace the buoy relative to its mean position and increase the 
load sustained by the catenary, increasing its mean tension. 

 REST POSITION 1.4 S  WAVES 

Measured Drift (m) - 0.026 

Horizontal force that 
causes the drift (N) 

- 0.29 

Static tension in the 
rest position (N) 

1.77 2.06 

Increase in  
Tension (N) 

- 0.29 

 

In the simulations using CFD, the surge is a bit larger than 

in the experiments, for reasons that are difficult to 

determine. There are differences in the incoming wave and 

there are also numerical fluctuations in the air phase, which 

can affect the surging motion and increase the mean drift 

force. 

An important limitation affects the comparison of measured 

and simulated tensions: the load cell used in the 

experiments, even though submersible, was not pressure 

compensated. Because of this, in some parts of the load 

cycle, the tension in the cable may be up to     N higher 

than measured and the actual correction depends on the 

instantaneous position and orientation of the load cell and 

on the wave phase.   

The tension force in the simulations using CFD is higher 

than in the simulations using linear potential theory, 

because the displacement induced by the drift forces 

increases the load on the cables in the CFD case. It is also 

higher than the measured tension in the experiments, 

around     N. Because of the limitations of the load cell 

used in the experiments, the actual tension in the cable may 

be up to     N higher than measured. This means that even 

though the estimated using CFD is larger than the 

measured one, it may, in fact, be closer to the real one. Part 

of the difference is also caused by the fact that the surge 

drift is overestimated.  

When the tension is close to zero, the numerically 

determined tension is noisier than the experimentally 

measured one.   This phenomenon has two causes: the 

singularity of the equation of motion of cables without 

bending stiffness at low tension (Burgess, 1992; 

Triantafyllou and Howell, 1994), and the nature of hp-finite 

LDG formulation itself. The effect can partly be 

compensated for through a careful application of filters. 

There are small phase offsets between the numerically 

determined and experimentally measured motions. This 

can have numerous causes, such as a difference between the 

real and numerical values of the damping, of the added 

masses, of the excitation force phase, errors in the 

determination of the physical properties of the buoy (centre 

of gravity, inertia, etc), errors in the estimation of the 

position of the centre of floatation (which is the reference 

point for the rigid body motions), etc. 

It was found that very small differences (around 0.005 m), 

in the measured position of the centre of gravity had some 

influence in the results, due to the change in the pitch 

stiffness and in the inertia around the centre of floatation.  

Even on a small scale model, such a high accuracy is not 

easily achieved due to the limitations of the technique used 

to determine these parameters. 

6. Conclusions  

Numerical simulations of a moored buoy were presented, 

where the mooring cable was modelled using the numerical 

model for cable dynamics MOODY and the buoy was 

modelled using two different methods: linear potential 

theory and computational fluid dynamics. These 

simulations were compared with experimental 

measurements. 

The results showed that MOODY can be used to 

successfully model mooring cables, as the dynamics of the 

buoy and the tension in the cable are reasonably well 

captured. When using linear potential theory, the second 

order drift forces aren’t accounted for and the surge drift 

isn’t reproduced. This is overcome when CFD is used. 

Limitations in the load cell used in the experiments cast 

some uncertainty in the measured tension values and, as a 

consequence, in the tension simulations. 

The conditions tested are in the linear regime. Wave energy 

devices will also be subjected to storm conditions, where 

the effect of non-linearities may be significant. In this case, 

linear potential theory may not hold and CFD simulations 

may be required. 
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