

Índice

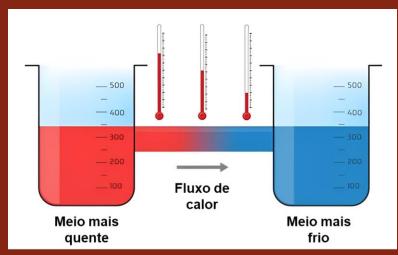
- **01** Princípios de funcionamento
- 02 Tipologias e as suas vantagens e desvantagens
- 03 Modo de funcionamento
- **04** Exemplos industriais
- 05 Fatores que influenciam a eficiência dos permutadores de calor
- **06** Custos
- **07** Aplicação prática na indústria
- **08** Enquadramento nos Objetivos de Desenvolvimento Sustentável
- 09 Conclusões

01 Princípios de funcionamento

Permutadores de calor

Direto

Torre de arrefecimento (The Spectator, 2021)

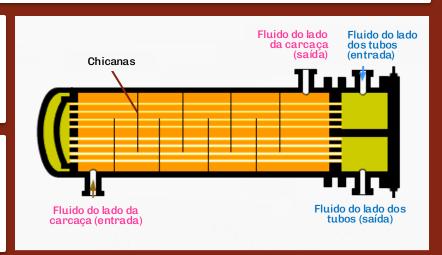

Indireto

Caldeira a vapor (Cerney, 2023)

01 Princípios de funcionamento

Transferência de calor (Adaptado de Shutterstock, 2021)

02 Tipologias e as suas vantagens e desvantagens


Permutador de calor de carcaça e tubos

Vantagens

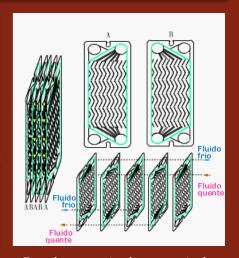
- Elevada pressão
- Elevada área de contacto num pequeno volume

Desvantagens

- Difícil manutenção
- Eficiência reduzida
- Baixa velocidade de fluxo

Funcionamento do permutador de calor de carcaça e tubos (Adaptado de Compraco, 2024)

02 Tipologias e as suas vantagens e desvantagens


Permutador de calor de placas

Vantagens

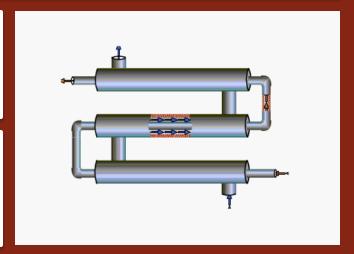
- Elevado coeficiente de transferência de calor
- Fluidos em contracorrente
- Turbulência elevada
- Fácil limpeza, manutenção e adaptação

Desvantagens

- Temperatura e pressão limitadas
- Pequeno percurso de fluxo

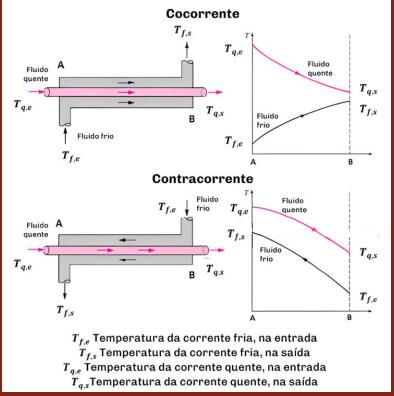
Funcionamento do permutador de calor de placas (Adaptado de Compraco, 2024)

02 Tipologias e as suas vantagens e desvantagens


Permutador de calor de tubos concêntricos

Vantagens

- Fácil limpeza e montagem
- Elevada flexibilidade
- Altas pressões


Desvantagens

- Não existe fluxo cruzado
- Custo elevado
- Dimensão elevada

Funcionamento do permutador de tubos concêntricos (Compraco, 2024)

03 Modo de funcionamento

04 Exemplos industriais

Indústria alimentar

Indústria petrolífera

Indústria automóvel

Indústria química

Indústria farmacêutica

05 Fatores que influenciam a eficiência dos permutadores de calor

06 Custos

$$C_{total} = C_{equipamento} + C_{operação}$$

07 Aplicação prática na indústria

Câmaras de refrigeração

Câmara de refrigeração de uma empresa frutícola (The Spectator, 2021)

Permutador de calor de tubos concêntricos (KoenB, 2007)

08 Enquadramento nos Objetivos de Desenvolvimento Sustentável

(European Comission, 2020)

09 Conclusões

- Os permutadores de calor **de tubos concêntricos** são unidades processuais bastante **versáteis** e são utilizados em diferentes **indústrias**.
- Os permutadores de calor ajudam a impulsionar a inovação e são essenciais para alcançar os Objetivos de Desenvolvimento Sustentável (ODS).

OBRIGADO A TODOS

L.EQ01_PF_T02_02

André Neves | Bianca Ginja | Mariana Oliveira | Pedro Costa | Teresa Silva