INVESTIGAÇÃO DE ACIDENTES E SEGURANÇA NA AVIAÇÃO

O IMPACTO DOS ACIDENTES DE AVIAÇÃO NA MELHORIA DA SEGURANÇA DAS AERONAVES

André Azevedo Constança Gaspar Daniel Azeredo David Moura Maria Leonor Novo Supervisão: Carolina

Furtado

Monitor: Tiago Cardoso

28/10/2024

1/25

PROJETOFEUP U. PORTO FEUP FACULDADE DE INCENHARIA UNIVERSIDADE DO PORTO

ÍNDICE

01

INTRODUÇÃO

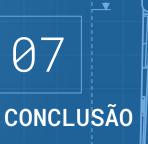
04

FATOR HUMANO

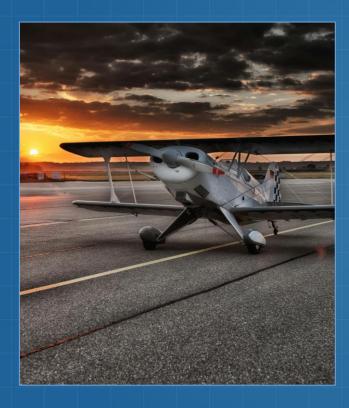
02

SISTEMAS DE SEGURANÇA NA AVIAÇÃO ATUAL

05


FALHAS DE EQUIPAMENTO

03


ACIDENTES NA AVIAÇÃO

06

FATORES AMBIENTAIS

01 INTRODUÇÃO

01- INTRODUÇÃO

A AVIAÇÃO, O MODO DE TRANSPORTE MAIS SEGURO

	2016	2017	2018	2019	2020	2021
Fatalidades Totais	39 753	39 364	38 755	38 424	41 041	44 959
Ar	413	347	396	455	358	371
Autoestrada	37 806	37 473	36 835	36 355	39 007	42 939
Caminho de Ferro	631	677	661	723	632	724
Água	737	709	682	707	853	715

Principais causas das fatalidades causadas por transportes, nos E.U.A.(Robinson 2023)

Lei de Moore da aviação - Contribuição dos acidentes para o melhoramento mundo da aviação

SISTEMAS DE SEGURANÇA NA AVIAÇÃO ATUAL

02- SISTEMAS DE SEGURANÇA

- Caixa preta

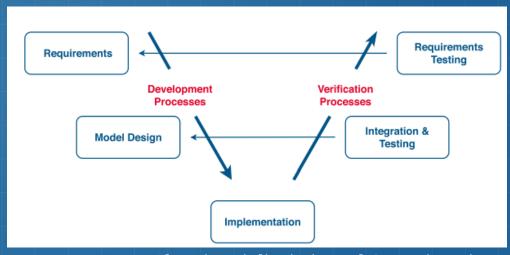
- Gravadores de dados de voo Diferentes tipos de
- Recolher dados importantes de sensores
- Determinar as causas dos acidentes

Diferentes tipos de dispositivos:

- (a) FDR
- (b) CVR

02- SISTEMAS DE SEGURANÇA

- Processo de certificação das aeronaves


EASA

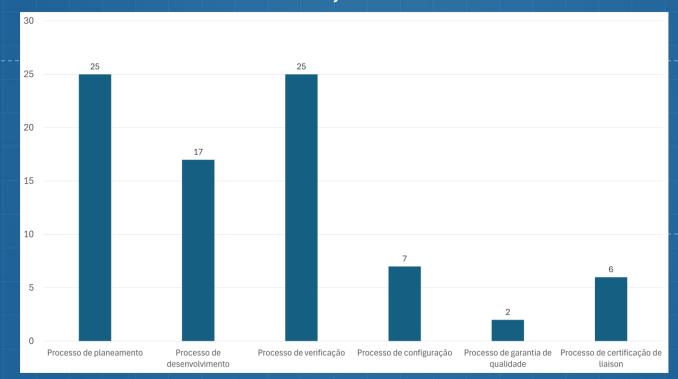
Certificação tem como objetivos:

- durabilidade
- segurança
- desempenho

Certificação do sofware e hardware:

• Europa: CS 25, AMI (inspeção e Manutenção)e CS 2x. 1301 e o CS 2x. 1309

Fluxo de trabalho de desenvolvimento de produtos (Ducoffe, Gabreau, e Ober 2024)

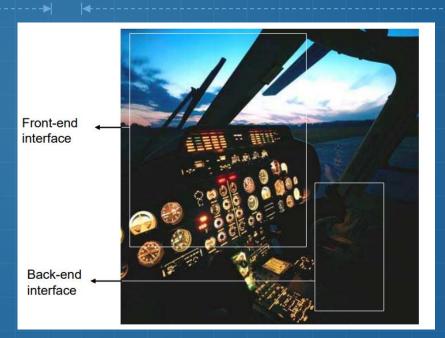


PROJETOFEUP

U. PORTO

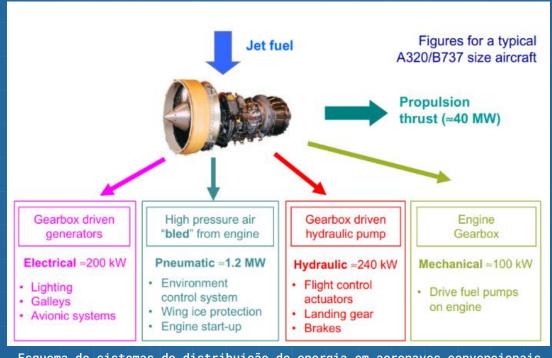
FEUP FACUIDADE DE ENGENHARIA

- Processo de certificação das aeronaves



Distribuição do uso de 82 tecnologias ao longo do processo de desenvolvimento de hardware (Sun, Edwards, e Connelly 2021)

02- SISTEMAS DE SEGURANÇA


- Sistemas eletrónicos nas aeronaves
 - Sensores
 - Controlo de voo (AFCS)
 - Piloto Automático

PROJETOFEUP U. PORTO FEUP FACULADO E O ENCENHARIA NUMERISIADO EO PORTO

- Estruturas

Esquema de sistemas de distribuição de energia em aeronaves convencionais (Yang, Gao, e Bozhko 2018)

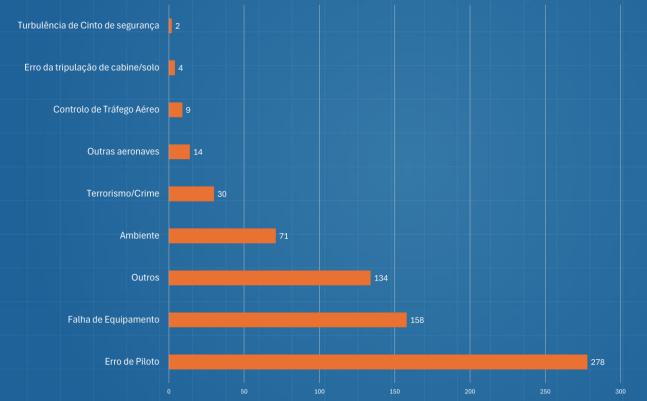
CONTROLO DE TRÁFEGO AÉREO

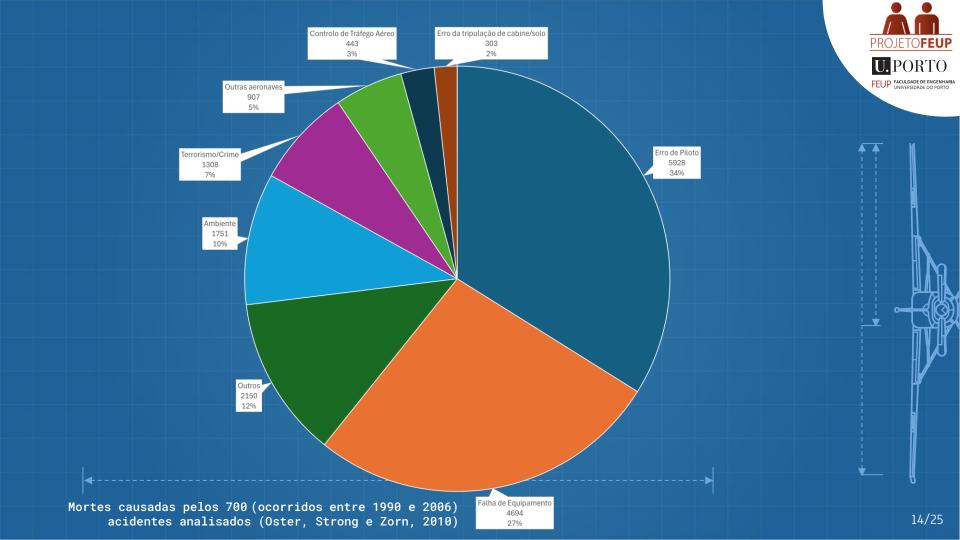
- Centrado no ser humano
- Vigilância baseada no radartransponder
- Comunicações de rádio VHF/UHF

TREINO DO PESSOAL

Formação de pilotos em simuladores realistas

- Flight Training Device (FTD) obtenção de certificados de aviação comercial
- Full Motion Flight Simulator (FFS) - treino contínuo




ACIDENTES NA AVIAÇÃO

PROJETO FEUP U. PORTO FEUP FACULDADE DE ENCENHARIA UNIVERSIDADE DO PORTO

03- ACIDENTES NA AVIAÇÃO

Causas dos 700 acidente de aviação (ocorridos entre 1990 e 2006) analisados (Oster, Strong e Zorn, 2010)

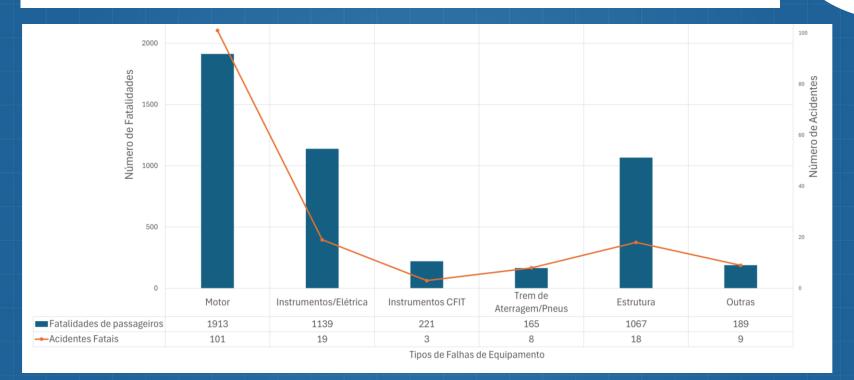
FATOR HUMANO

04 - FATOR HUMANO

- Comportamentos individuais e subjetivos
- Dificuldade no reconhecimento e interpretação de estímulos sensoriais externos à aeronave

Tipo de Erro de Piloto	Fatalidades de Passageiros		Acidentes Fatais		- Fração de passageiros mortos
	Número	Fração	Número	Fração	ração de passageiros mortos
Flying Skills	1169	20%	83	30%	36%
Aproximação desestabilizada	269	5%	8	3%	56%
Voo controlado contra o terreno	527	9%	34	12%	93%
Julgamento em voo	2891	49%	100	36%	87%
Julgamento no solo	916	15%	41	15%	77%
Gestão de combustível	156	3%	12	4%	45%

Proporção dos diferentes erros de piloto nos 700 acidentes (ocorridos entre 1990 e 2006) analisados (Oster, Strong, and Zorn 2010)



FALHAS DE EQUIPAMENTO

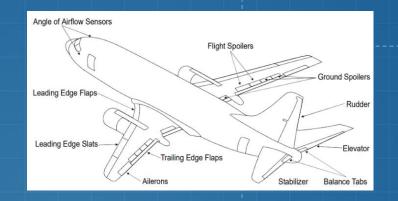
000 0000000000000 🗌 000000000 🗍 0 00 秞

05 - FALHAS DE EQUIPAMENTO

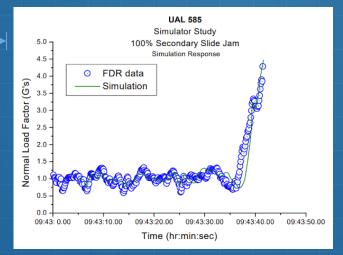
Número de fatalidades e de acidentes (dos ocorridos entre 1990 e 2006 e analisados) associados aos diferentes tipos de falhas de equipamento (Oster, Strong e Zorn 2010)

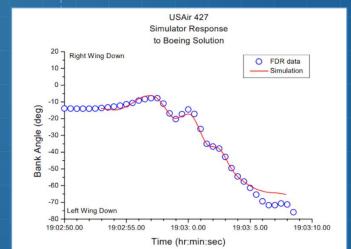
05- FALHAS DE EQUIPAMENTO

• Turkish Airlines Flight 1951 (2009)


Visão geral dos altímetros ligados aos controlos do piloto automático e do acelerador automático (Harkins 2012)

Falhas de altímetros segundo registros da Boeing (Hecht 2011)


Year	Boeing 737 NG flight hours	Effect on automatic flight system	Activating 'retard flare' mode
1999	890000	0	0
2000	1763000	0	0
2001	2498000	0	0
2002	3269000	5	0
2003	3931000	8	5
2004	4757000	4	0
2005	546000	4	0
2006	6284000	2	0
2007	7282000	8	0
2008	7980000	15	2
2009	not available	9	5



05- FALHAS DE EQUIPAMENTO - EXEMPLOS

United AirlinesFlight 585 (1991)USAir Flight 427 (1994)

FATORES AMBIENTAIS

06- FATORES AMBIENTAIS

• Condições meteorológicas adversas e obstruções geográficas

Acidente do voo 123 da Japan Airlines

07 CONCLUSÃO

07- CONCLUSÃO

- Transporte aéreo comercial como meio de transporte mais seguro
- 40% dos acidentes devido falhas humanas e 23% devido a falhas de equipamento
- Mudanças implementadas como resultado direto de investigações de acidentes aéreos

