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Abstract: Soft rocks, characterized by low strength, high deformability, and poor cementation, pose significant 

challenges in geomechanical characterization, particularly within complex volcanic environments. The Azores 

Islands, shaped by diverse eruptive processes and intense weathering, present volcanic rocks with substantial 

lithological variability and heterogeneities. Combined with active seismicity and volcanism, these factors complicate 

the assessment of rock mass behavior and stability. This study focuses on the geomechanical characterization of soft 

volcanic rock (VR) masses in the Azores using the Volcanic Rock System (VRS), an empirical classification 

specifically adapted for volcanic formations. By applying the VRS to an enriched database that integrates new 

geotechnical data from the Azores, the study refines correlations between key parameters such as uniaxial 

compressive strength, porosity, and deformability. The results reveal the limitations of conventional systems like 

RMR in capturing the complexity of volcanic formations and highlight the VRS’s enhanced capability to assess rock 

mass quality, stability, and excavation challenges. A new subsystem within the VRS is also proposed to improve the 

classification of soft volcanic rocks, offering a more tailored approach for managing the unique geotechnical 

conditions found in the Azores 

Keywords: Azores Islands; Volcanic Rocks; Soft Rocks; VRS Empirical System. 

 

1. Introduction   

The islands of the Azores Archipelago are in the middle of the 

North Atlantic Ocean, in a very seismically active region, 

where American, Euroasian and African tectonic plates meet 

– Azores Triple Junction. The islands are volcanic structures 

emerging from the Azores Platform. Since the settlement of 

the islands by the Portuguese, in 15th century, there are many 

historical records of natural catastrophes, such as destructive 

earthquakes, volcanic eruptions and landslides (Gaspar et al., 

2007; Malheiro and Nunes, 2007). 

The Azores archipelago is almost entirely characterized by 

volcanic rocks (Gaspar et al., 2007; Malheiro and Nunes, 

2007; Jorge, 2023). These volcanic rocks are subject to 

various weathering processes that can result in rock masses 

exhibiting soft rock characteristics, with a wide range of 

geological features. 

Typically, the soft rocks are classified as soft sedimentary 

rocks or weathered geological materials, but in Azores 

Archipelago only Santa Maria Island has sedimentary rocks, 

due to it age and geologic evolution (Marques et al., 2020). 

The other islands are composed only with volcanic materials, 

characterized by the alternance of subaerial explosive and 

non-explosive eruptions, as is common (Jorge, 2023). The 

geotechnical behavior of these volcanic materials differs 

significantly from that of other geological materials 

(sedimentary, intrusive magmatic and metamorphic rocks – 

rock masses, and soil formations), necessitating a specific 

approach to evaluate their geomechanical parameters. 

 



Soft volcanic rock (VR) masses are composed of materials 

like tuff, pumice, volcanic ash, and certain types of lava flows, 

which are characterized by their relatively low strength, low 

density, high compressibility and expansivity and high 

porosity compared to harder, denser volcanic rocks. Such 

characteristics present engineering challenges, including 

instability, water absorption, limited bearing capacity, erosion 

and accelerated weathering (Miranda et al., 2018). According 

to Kanji (2014), sampling and site investigation of soft rocks 

are usually a challenge, and their features are too soft to be 

tested in rock mechanical laboratory equipment and too hard 

for soil mechanics laboratory equipment, what oblige to some 

procedure’s adaptation. Kanji (2014) also highlights the 

significant difficulty in classifying these rocks using 

conventional geomechanical systems, which are primarily 

designed for the discontinuous media of harder rocks. 

Preliminary evaluation of the geomechanically parameters of 

rock masses can be carried out using empirical classification 

systems. These systems consider key properties such as rock 

strength, the condition and orientation of discontinuities, 

groundwater presence, and in situ stress state. Each property 

is assigned a numerical value, which is then combined using 

a specific formula to calculate a final geomechanical index. 

The most widely used systems are the rock mass rating 

(RMR), Q and geological strength index (GSI) (Bieniawski, 

1983; Barton, 2000; Hoek et al., 2002). For evaluating 

deformability, there are several analytical equations establish 

relationships between the deformability modulus and 

geomechanically indices derived from these classification 

systems. However, these equations should be applied with 

caution, considering their inherent assumptions and 

limitations.  

Several specialized subsystems have been developed to 

address specific geotechnical challenges. One example is the 

QTBM system (Barton, 2000), an adaptation of the Q-system 

designed to predict key parameters for tunnel excavations 

using Tunnel Boring Machines (TBMs), including machine 

performance, support requirements, and potential ground 

behavior. In addition to global systems, some countries 

developed their own region specific empirical/classification 

systems like the Chinese BQ classification system (Feng and 

Hudson, 2011), and the MR system applied in Portugal and in 

Brazil (Rocha, 1975; Miranda, 2003). Efforts have 

additionally been made to develop classification systems 

specific to volcanic formations. Del Potro and Hürlimann 

(2008) pioneered one of the first empirical classifications for 

volcanic materials in the Canary Islands, focusing primarily 

on slope stability analysis. Sousa et al. (2022) developed a 

new empiric system, for volcanic rocks, by adapting RMR 

system. This followed the experience acquired in Brazil 

during the construction of a wide number of large dams in 

volcanic foundations (Cabrera, 1988; Herrera, 2005). The new 

empirical system for volcanic rocks is designated as VRS – 

Volcanic Rock System (Miranda et al, 2018; Sousa et al., 

2021), was specifically designed to address the unique 

geomechanical characteristics of volcanic formations. The 

VRS considers six geotechnical parameters to which relative 

weights are attributed. The final VRS index value, which 

varies between 0 and 100, is obtained through the algebraic 

sum of these weights. With this index, it is possible to obtain 

strength properties, deformability modulus, and description of 

the rock mass quality, as well is possible to define 

recommendations for excavation and support needs and 

support loads, using correlations with other geomechanically 

indices. 

To implement the empirical VRS, Sousa et al. (2021) built a 

database with volcanic rocks characteristics. The initial 

dataset was compiled from data of Madeira Island volcanic 

materials and later expanded with data from the islands of 

Canarias Archipelago and Mexico. Subsequently, Amaral and 

Malheiro (2016) contributed with more information from the 

volcanic materials of the Islands of São Miguel and Faial, of 

Azores Archipelago, regarding both VRS and RMR system, 

to enrich and complete the previous database (Sousa et al., 

2021). 

Accurate implementation of the VRS depends on high-quality 

geotechnical data to effectively characterize volcanic rock 

masses. To achieve this, detailed field investigations are 

fundamental to capturing the complexity and variability of 

volcanic formations. Geophysical surveys can be employed as 

a non-invasive method to gain preliminary insights into 

subsurface conditions but are not always utilized. More 

commonly, direct geological and geotechnical 

investigations—such as boreholes, shafts, or field 

exposures—serve as the primary means of collecting the 

essential data required for VRS classification (Wyllie and 

Mah, 2010; Zhigang et al., 2020).  

This becomes particularly critical when dealing with soft and 

weathered volcanic rocks, which present unique challenges 

due to their intermediate strength between soils and hard rocks 

(Kanji, 2014). These materials are often too soft for 

conventional rock mechanics testing but too hard for standard 

soil mechanics procedures, complicating both sampling and 

laboratory characterization. Specialized drilling techniques, 

such as air drilling to minimize water-induced sample 

degradation or mud drilling for improved core recovery, are 

often necessary to ensure representative samples. Advances in 

sampling equipment, like those developed at SKL-GDUE in 

China (Zhigang et al., 2020), have further improved the 

quality of data collected. Recent improvements in in situ and 

laboratory testing methods, along with enhanced numerical 

models (Sousa et al., 2020a), have strengthened the evaluation 

of geomechanical properties in volcanic rocks. Nevertheless, 

the inherent heterogeneity of these materials often leads to 

significant data variability. Each formation has its own 

properties and interpolation, and extrapolation data treatment 



are not appropriate (data statistical treatment - multivariate 

statistical analyses). Geotechnical databases of volcanic 

materials, when analysed by Artificial Intelligence (AI) – 

based on Data Mining (DM) techniques, make it possible to 

obtain new and useful knowledge. The present paper concerns 

to the geomechanically characterization of volcanic rock 

masses in the Azores Islands, with incidence on soft rock 

masses. Concepts of AI are introduced, with particular 

incidence in DM and applied to the volcanic rock database 

enriched by information from rocks from Azores Islands 

(Faradonbeh et al., 2020). 

This paper is structured into six sections. Section 1 presents 

the Introduction. Section 2 discusses the fundamental 

concepts of soft rock masses, with a focus on volcanic rock 

masses. Section 3 provides an overview of the geological 

conditions of the volcanic rock masses in the Azores Islands, 

highlighting specific case studies, including the slope 

instability at Porto Formoso, the foundation challenges during 

the extension of the runway at Ponta Delgada Airport on São 

Miguel Island, and the landslide event at Faial Island. In 

Section 4, the application of the VRS to the Azorean context 

is detailed, alongside a comparison with the RMR system. 

This section also explores the integration of AI techniques 

applied to the enriched geotechnical database. Section 5 

introduces a newly developed classification subsystem 

tailored specifically for soft volcanic formations. Finally, 

Section 6 presents the concluding remarks, summarizing the 

key findings and implications of the study. 

 

2. Soft Rock Mechanics - Concepts  

The definition of soft rocks is connected to rock masses with 

low strength, large porosity and poor cementation (Rocha, 

1975; ISRM, 1981; Kanji, 2014; He and Sun, 2020; 

Sadowsky, 2020). The uniaxial compressive strength (UCS) 

for soft rocks typically falls below 25 MPa. However, there is 

some variability in the literature, with lower limits suggested 

around 2 MPa and upper limits up to 20 MPa, depending on 

the classification criteria (Rocha, 1975; Sadowski, 2020). 

Soft rock masses include sedimentary rocks of detrital or 

chemical origin, with weak cementation, and residual rock 

masses that result from weathering of the Earth's crust. The 

residual soft rock materials must be associated with their 

geological genetic heritage, so that potential geotechnical 

problems can be predicted. Naturally, volcanic rocks must 

also be included (volcanic conglomerates, breccias and lahar; 

basaltic breccias; pyroclastic deposits, volcanic ash, and tuff 

and ignimbrite; and weathering products of crystalline rocks - 

Sadowski, 2020) when they have low strength to uniaxial 

compression and great deformability. Table 1 presents typical 

parameters associated with soft rocks namely typical values 

of rock deformability, shear strength (cohesion and friction 

angle), and strength to uniaxial compression of the rock. In the 

evaluation of deformability, it is important to consider 

anisotropy that exists in rock masses. In soft rock masses 

anisotropy is mainly related with the rock anisotropy that 

influences the rock mass properties (Sousa et al., 2020a). 

The deformability of soft rocks, if the correlation Er = 200.c, 

established by Rocha (1975), is accepted (Er is the 

deformability of the rock mass and c is uniaxial compression 

strength of the rock), and assuming that c varies between 

2MPa and 25MPa, the deformability modulus of soft rocks 

ranges between 4GPa and 50GPa. This significant 

deformability poses challenges in geotechnical applications, 

especially when dealing with highly weathered or deeply 

buried rock masses. Another critical aspect of soft rock masses 

anisotropy is introduced by geological discontinuities and the 

inherent fabric of the rock. Time-dependent behaviors, such 

as creep and long-term deformation, are also significant in soft 

rocks. Rocha (1975) highlighted how soft rocks undergo large 

deformations at depth and experience marked porosity 

increases near the surface due to weathering. This weathering 

process leads to a degradation of mechanical properties, with 

a substantial increase in interaggregate pore content and only 

a slight increase in intra-aggregate porosity (Knopp et al., 

2022). 

 

Table 1. Geomechanically parameters of soft rocks (Adapted 

from Rocha, 1975). 

 
 

Regarding the strength of the rock masses, friction angle () 

is, as a rule, between 30 ْ and 45 ْ and cohesion (c) presents, as 

a rule, low values but in general is greater than 0.4 MPa. The 

presence of discontinuities influences the shear strength of the 

rock mass; however, in soft materials with inherently low 

strength, the effect of these discontinuities is less pronounced 

(Rocha, 1975). 

Construction on soft rocks presents significant challenges and 

often requires specialized engineering solutions (Zhigang et 

al., 2020). Numerous documented accidents highlight the 

risks associated with building on soft rock foundations, 

especially in regions where these materials are the 

predominant geological formation. Soft rocks are commonly 

encountered in foundations, underground structures (such as 

tunnels and excavations), and mining or extractive activities. 

Additionally, natural slope instability is a frequent concern in 

these materials and must be carefully managed. Given their 



complex and often unpredictable behavior, real-time 

monitoring is essential when working with soft rock 

formations. In China, the definition of soft rocks has been 

further refined, particularly in the context of controlling 

ground deformation in coal mining operation (He and Sun, 

2020). According to He and Sun (2020), soft rocks in an 

engineering context are those that undergo significant 

deformations under stress, leading to potential structural 

issues. This concept is expressed mathematically as: 

 

 ≥ [] and U ≥ [U]            (1) 

where  is the engineering stress (MPa), [] is the strength of 

the rock mass (MPa), U is rock deformation (mm), and [U] is 

the deformation allowed in the practice (mm).  

Tunnels and other underground projects are subject to the 

same geomechanical challenges posed by soft rock 

formations, which can lead to geological hazards if not 

properly addressed (Zhigang et al., 2020). All design and 

construction of underground infrastructure and related 

projects must consider the special problems of soft rock. But 

it is very important not forget the surficial behaviour. 

One of the most critical factors influencing the stability of 

tunnels and other underground structures is the presence of 

continuous low-resistance planes within rock masses. These 

weak planes can act as slip surfaces, leading to rock mass 

movements and potential failures in underground excavations 

(Rocha, 1975; Pedro et al., 1975; Sousa et al., 2025). In soft 

rocks, where the inherent strength is already low, the presence 

of such discontinuities can significantly compromise tunnel 

stability. A notable example occurred during the excavation of 

a surge chamber for an underground hydroelectric project in 

Mozambique, where weak planes within the rock mass led to 

unexpected instability (Sousa et al., 2025). Similarly, a gravity 

dam experienced foundation issues due to an extensive sub-

horizontal basaltic layer with a weak circular surface 

approximately 50 cm thick. Finite element modeling, as 

shown in Fig. 1, was used to analyze the dam’s foundation, 

revealing that the risk of progressive failure decreased as the 

deformability of the weak surface increased—supporting 

earlier findings (Rocha, 1975; Pedro et al., 1975; Sousa et al., 

2020b). 

While weak planes and discontinuities present immediate 

risks to tunnel stability, long-term degradation due to 

weathering processes can further exacerbate these issues. In 

underground environments, weathering can continue even 

after excavation, particularly in soft rocks that are highly 

sensitive to moisture and air exposure. Hydration of clay 

minerals and the entrapment of air in pore spaces initiate 

wetting-drying cycles, leading to micro-fracturing and 

material expansion. These processes reduce the strength and 

increase the deformability of the rock mass over time 

(Marques et al., 2020). The presence of water is especially 

problematic, as it not only accelerates weathering but also 

weakens the rock by increasing pore pressure and reducing 

shear strength. In tunnels, water infiltration can lead to 

significant stability concerns, including roof collapses, wall 

failures, and floor heaving, highlighting the need for effective 

drainage and support systems. 

.

 
Fig. 1. Numerical results for the foundation of a gravity dam 

(Pedro et al., 1975; Sousa et al., 2020b). 

 

3. Volcanic Rocks in Azores Islands 

3.1 Volcanic mechanisms 

Volcanic eruptive systems are highly complex and influenced 

by multiple factors, including the age of the system and the 

geological context, such as divergent or convergent 

continental plate margins, island arcs, and within the plates, 

which determine their initial characteristics. These systems 

may include multiple eruption centers, each with distinct 

geochemical compositions. The geochemical composition of 

the magmas, associated with the evolutionary process of 

magma ascent, physical variables like temperature and 

pressure, and interaction with surrounding rocks or other 

magma chambers, creates specific conditions that influence 

the extent, morphology, and type of volcanic activity. 

More acidic magmas, such as trachyte lavas, contain high 

levels of silica, which gives them high viscosity, even at high 

temperatures and pressures. These magmas also have low gas 

solubility at low confining pressures, resulting in explosive 

and violent eruptions that generate large quantities of 

pyroclasts. In contrast, more basic magmas, like basaltic 

magma, have a lower silica content and are therefore more 

fluid, forming lava flows that can travel long distances and 

cover vast areas. These differences result in distinct geological 

structures: volcanoes formed by acidic magmas tend to have 

steeper and more mountainous shapes, with a pronounced 

conical structure, while basaltic volcanoes generally have 

broader and less inclined slopes due to the fluidity of their 

lavas.  

Volcanic rock masses are compositional and structurally 

heterogeneous and anisotropic both vertically and 

horizontally, characterized by the alternation of strata of 

compact rocks and pyroclastic materials (such as volcanic ash, 

Lapilli, and volcanic bombs) with limited continuity. This 



pattern is also influenced by weathering, erosion, and 

sedimentation processes that occur between sequential 

eruptive episodes, transforming the geological structure over 

time. All these features contribute to the existence of zones 

with different mechanical and hydraulic properties, degree of 

weathering, and water content, among other characteristics. 

Contributing to the weathering of the volcanic materials are 

two important processes. Hydrothermal alteration/weathering 

is a complex poro-chemo-mechanical process that develops in 

volcanic environments impacting the mechanical and 

petrophysical properties of rocks by changing mineralogy, 

texture, and fabric (e.g., Pereira et al., 2024). Also, essentially 

on islands, salt weathering (physical process) is particularly 

important because of the presence of salts, resulting from 

marine spray, that crystallize in and on the particulates of the 

volcanic materials (e.g., Alves and Figueiredo, 2018), 

principally in cycles of wet – drying conditions. 

Simultaneously, climate change, with extreme weather events, 

by very intense precipitation rate may contribute to the erosion 

of the volcanic masses or to increase the dissolution rate of 

some minerals, essentially associated with moderate to high 

temperature. These processes affect all volcanic rocks 

characteristics and contribute to their evolution. VR are 

particularly sensitive to them. 

There are several areas in the world with VR, as is the case of 

volcanic islands, where soft rocks are dominant. The volcanic 

formations of Azores archipelago are a good example of the 

complexity mentioned above, and to the issues related to VR. 

 

3.2 Azores Archipelago 

As was mentioned in the Introduction, the Azores Archipelago 

is in a very active seismic zone, associated to the Central Rift 

of the Atlantic Ocean. The nine islands are distributed in a 

WNW-ESE general orientation strip, as is shown in Fig. 2. 

The islands are volcanic, connected with the complex local 

geotectonic of the oceanic crust. Detailed description of this 

local geotectonic context identifies the Mid-Atlantic Ridge 

(CMA), the East Fracture Zone (ZFEA) and the North 

Fracture Zone (ZFNA) of Azores and the Terceira Rift (RT) 

(Santos, et al., 2024). The alignments defined by the islands 

of S. Jorge and Faial Pico are distinguished to a limited extent 

(Gaspar, 1996). 

The geomorphology of the islands is dominated by evidence 

of intense volcanic activity, with notable features such as 

imposing calderas—Sete Cidades, Fogo, and Furnas on São 

Miguel Island—alongside numerous monogenetic eruptive 

centers, including trachytic domes, pumice cones, slag cones, 

volcanic dykes, and hydrovolcanic structures (Santos et al., 

2024). Each island has its own specificity, with diversified 

geomorphology among them. Even on the same island the 

geomorphology varies. These variations resulted from the 

type of volcanism that occurred. The islands of Pico, São 

Jorge and Santa Maria resulted from a marked fissural and 

basic volcanism. While the islands of São Miguel, Terceira, 

Faial, Graciosa, Corvo e Flores resulted from mixed 

volcanism – basic and explosive, which gave origin of lava 

materials with distinguishing characteristics and to pyroclastic 

deposits with very different compositions. 

This way it is easy to understand that the volcanic formations 

of the Azores islands present a very important complexity, 

resulting from different types of volcanic activity (from the 

effusive Hawaiian style, to the strongly explosive Plinian 

style), different types of emitting volcanic structures (mono- 

and polygenic), the magnitude of the volcanic activity, and the 

erosion dynamic. This complexity is translated into main 

factors: at micro scale – composition and texture; and at macro 

scale - structure and morphology. According to Trota et al. 

(2011) several studies carried out on the geochemistry of the 

rocks of the Azores have led to the conclusion that the greatest 

occurrence of volcanic rocks (l.s.) in this archipelago is 

located at the extremes of the calco-alkaline series, the basalts 

and trachytes, with less importance given to intermediate 

terms. 

 
Fig. 2. Location and geotectonic framework of the Azores 

Archipelago (Santos et al., 2024). 

 

3.3 Specificity of Azores rock materials 

Wallenstein (1999) defined that all the volcanic materials 

found in the Azores archipelago belong to an igneous series of 

magmatic evolution known as the alkaline series. It is 

characterized by an evolution from the most primitive terms, 

the basalts (l.s.), to the most evolved terms of the igneous 

series, the trachytes (l.s.), and its chemical variety is explained 

mainly by fractional crystallization from a parental basaltic 

magma. This author states that the volcanic rocks of Azores 

islands are subdivided into two large groups: (1) rocks formed 

by the cooling of lava flows of basic composition (e.g., basalts 

(l.s.) and intermediate to acidic composition (e.g., trachytes 

(l.s.)); and (2) pyroclastic rocks, formed by the cooling and 

agglutination of constituents such as ash, lapilli and juvenile 

and lithic blocks, during explosive phases, whether explosive 

or effusive volcanism. 

In the first group mentioned above, basalts (l.s.) appear in the 

least evolved phase, and in the most evolved phase appear 



trachytes, which are hard rocks. In the second group, the 

pyroclastic rocks can be divided into welded ignimbrites, 

welded pyroclasts of volcanic slag and surtsean tuffs, which 

are rocks from their genesis (formed by fragmented materials 

during the cooling of the products ejected by the eruptive 

columns, with different granulometric and textural sizes) have 

soft characteristics and physical and mechanical aspects that 

are different from more competent rocks. 

The rocks of the two groups exhibit different physical and 

mechanical behavior, as is understandable from the previous 

description. The hard materials of the first group, with a higher 

density and greater mechanical resistance, when subject to 

weathering processes develop different degrees of 

weathering/alteration that modify their initial behavior. The 

materials of the second group, usually, have high porosity and 

low density, when compared to rocks formed by the cooling 

of lava flows. 

Basalts (l.s.) can have a closed matrix (compact rock) and/or 

with vacuoles, because of the release of gases and to the type 

of lava (e.g., aa or pahoehoe). Wallenstein (1999) also adds 

that for characterization, the basalts were divided into 

vacuolar (V) and compact (C), and those with weathering 

greater than or equal to W3. Trachytes (Traq) and welded 

ignimbrites (IS) were also characterized by Wallenstein 

(1999). In addition to these mentioned lithotypes, there are 

also occasionally cemented basaltic pyroclastic deposits and 

surtsteyn tuffs, both of which were not characterized in this 

work due to their limited territorial expressiveness. 

Slag cones are common on these islands as a result of 

subaerial basaltic eruptions. Basaltic pyroclasts are fragments 

projected during the most explosive phase of Hawaiian and/or 

Strombolian volcanic eruptions. These materials are deposited 

by fall and/or ballistic trajectory. Their accumulation near the 

eruption center gives rise to the so-called “slag cones”, which 

correspond to conical structures that are generally well-

defined and symmetrical, with heights that rarely exceed a few 

hundred meters. These structures sometimes have one or more 

craters at the top and can take on more elongated shapes when 

they develop along fissures (Marques et al., 2020). 

Under static conditions, in these volcanic cones the inclination 

of their slopes, when recent, corresponds approximately to the 

angle of friction of their constituents (around 33o). Over time, 

and due to erosion, this slope tends to decrease (Fraga, 1988). 

Basaltic pyroclasts take on different shapes and sizes. This 

results from the fact that they are often ejected while still fluid 

and solidified in the air. In terms of the shape, they acquire 

different shapes (from rounded to elongated). Regarding to the 

size, they vary significantly; generally, they are grouped into 

three categories: (1) Fine Basaltic Pyroclastic Deposits, those 

that present basaltic silt textures; (2) Coarse Basaltic 

Pyroclastic Deposits, those that present clasts of the size of 

gravels; (3) Undifferentiated Basaltic Pyroclastic Deposits, 

those that present a textural variety, although with a greater 

predominance for the granulometry of sands (Amaral et al., 

2016). 

These authors state also that it should be noted that in terms 

of pyroclastic deposits, the different ones have some 

peculiarities: in general, the black ones are found in the outer 

layer of the cones and are looser; while the reddish ones are 

found in the central area of the cones and have a greater 

tendency to be welded.  

About mineralogy, Malheiro et al. (2010) found that the most 

abundant mineral in the samples analyzed was plagioclase 

(anorthite), followed by pyroxenes (augite) and olivines 

(forsterite). These authors also found that the samples 

corresponding to red basaltic pyroclasts showed the presence 

of hematite, resulting from the oxidation of iron. 

Azores islands present different geological characteristics due 

to the volcanic nature of the rocks and the variability of its 

sequences of stratigraphic (Forjaz et al. 2001; Malheiro and 

Nunes 2007; Malheiro et al. 2018). Malheiro and Nunes 

(2007) presented the general stratigraphic profiles on Azores 

islands (Fig. 3). 

 
Fig. 3. Stratigraphic profiles at Azores Island (Malheiro and 

Nunes, 2007). 

 

3.4 Geotechnical characteristics 

Malheiro et al. (2018) conducted geomechanical 

characterization studies of rock materials found in the Azores 

archipelago to determine the ranges of variation of the 

different volcanic lithotypes. Various tests were carried out, 

including resistance to uniaxial compression (σc), density (ρ), 

effective porosity (p0), and propagation velocities of 

longitudinal seismic waves (V), among other tests. Tests on 

trachytes are shown in Table 2 (Malheiro et al. 2018), where 

d is bulk unit weight; r is real density; b is apparent volume 

mass; p0 is open porosity; p is total porosity, and UCS is 

uniaxial compressive strength. The samples were from São 

Miguel, Santa Maria, Faial, and Flores Islands.  

The authors obtained the correlations presented in Table 3.  

Other studies were carried out on the Azores islands. Moniz et 

al. (2016) studied the materials on the island of São Miguel 

using triaxial tests and obtained the results shown in Table 4. 

Also, Santos et al. (2024) tested 263 samples of different 

volcanic materials (pomitic deposits of a trachytic nature with 

a fine (soil) and coarse (pumice) matrix, welded and non-

welded ignimbrites, and secondary deposits such as slope 



deposits), for evaluation of uniaxial compression and density 

and the results are presented in Fig. 4.  

 
Table 2. Summary of geotechnical information for trachytes 

in the Azores. 

Parameters Mean Standard 

dev. 

Min. Max. No. of 

tests 

γd (kN/m³) 25 1 21 26 24 

ρr (kg/m³) 2684 34 2660 2750 5 

ρb (kg/m³) 2458 131 2080 2540 24 

p₀ (%) 70 4.7 4.3 21.5 24 

p (%) 12.2 7.7 4.9 24 5 

UCS (MPa) 136.4 49.5 40.0 204.0 22 

 
Table 3. Equations obtained by the correlation among the 

different geotechnical parameters (Malheiro et al., 2018). 

Independent 
variable 

Dependent 
variable 

Equation correlation 
R2 

σc (MPa) γd (kN/m3) σc = 9E-05 . γd 
4.24 0.48 

po (%) γd (kN/m3) po = -2.23 . γd + 69.5 
 

0.83 

po (%) σc (MPa) po = -12.2 . ln(σc) + 
66.1 
 

0.87 

Vus (m/s) γd (kN/m3) Vus = 4.1 . γd 
2.2 

 
0.82 

Ed (GPa) γd (kN/m3) Ed = 2E-06 . γd 
5.4 

 
0.81 

Vus (m/s) σc (MPa) Vus = 661.4 . σc
 0.47 

 
0.65 

 
Table 4. Shear strength obtained in triaxial tests of rock 

samples (Moniz et al., 2018). 

Sample ϕ' (°)* c' (kPa)* ϕcu (°)** Ccu (kPa)** 

DV 25.1 5.5 11.9 1.4 

DPF1 37.8 0.9 23.5 20.1 

DPF2 35.7 0.0 32.7 3.0 

INS 37.4 15.5 29.0 4.3 

IS-W5 35.2 23.7 28.3 76.3 

PPI 39.2 0.0 -- -- 

PPII 42.1 0.0 -- -- 

* drained conditions 
** undrained conditions 
DV – Slope deposit; DPF – Fine pomitic deposit; INS – Non welded 
ignimbrite; IS-W5 – Weathered welded ignimbrite; PPI – Coarse 
pomitic deposit (type I); PPII – Coarse pomitic deposit (type II). 
 
4. Application of VRS to Azores Islands 

An empirical system was developed for the characterization 

of volcanic rocks and is designated as VRS. The VRS is an 

adaptation of the RMR system and includes a classification 

developed at São Paulo, for tunnels in basaltic formations 

(Menezes et al., 2005; Moura and Sousa, 2007). 

The new empirical system is based on the consideration of six 

geotechnical parameters to which relative weights are 

attributed. The final VRS index value, which varies between 

0 and 100, is obtained through the algebraic sum of these 

weights. The following geomechanically parameters were 

considered: P1 - UCS; P2 - Rock weathering characteristics; P3 

- Intensity of jointing; P4 - Discontinuity conditions; P5 - 

Presence of water; P6 - Disposition of blocks. Different 

weights are assigned to each parameter, as illustrated in Fig. 5 

(Miranda et al., 2018; Sousa et al., 2021). 
 

 
Fig. 4. Box-and-whisker plots of uniaxial compressive 

strengths and density values for the different lithotypes 

characterized (Santos et al., 2024). Note: BV - Vacuolar 

Basalt, B(W3) - Weathered Vacuolar Basalt, BC - Compact 

Basalt, Traq – Trachytes, IS - Welded Ignimbrites.  

 

In relation to RMR empirical system, the properties were 

identical for P1, P4 and P5, but have different weights. The 

parameter due to discontinuities orientation P6, introduced by 

Bieniawski (1983) as an adjustment of the sum of the 

remaining five parameters, was difficult to assign a weight, 

because it depends on groundwater conditions. Instead, it was 

substituted by another parameter related to the disposition of 

blocks. This parameter is considered to evaluate block 

stability. Four situations were considered: blocks of very 

favourable, favourable, acceptable and not acceptable which  

refer to the stability of the geotechnical structure. The VRS 

system considers for P2 the rock weathering effect, which is 

not considered by the RMR system, while P3 is related to the 

joint intensity combining the effects of parameters RQD and 

discontinuity spacing considered by RMR system. 

 
Fig. 5. VRS classification and weights for the system. 

 

The meaning of different parameters is presented by the 

publications of Miranda et al. (2018) and Sousa et al. (2024). 

The rock mass is classified into six classes. A rock mass 

designated as class VI and class V has a behaviour conditioned 

by the rock characteristics of deformability and strength and 

correspond to soft rock masses. On the other hand, a formation 

designated as class I behaves in accordance with the 

characteristics of the discontinuities. For rock masses with 

other classes, behaviour is determined by the combination of 

both types of characteristics. Table 5 indicated the 



classification of rock masses in accordance with the value of 

the index VRS. 

Table 5. Classification of volcanic rock masses by VRS index 

Classification Values of VRS 

I – Excellent 100-91 

II – Good 90-76 

III – Reasonable 75-61 

IV – Regular 60-41 

V – Poor 40-21 

VI – Very Poor 20-0 

 

Three different cases of application of the empirical systems 

VRS and RMR were considered at São Miguel and Faial 

islands, from Azores archipelago.  

The case 1 is related to the foundation of the extension of the 

runway at Ponta Delgada Airport in São Miguel Island (Fig. 

6). During the construction, volcanic cavities were detected in 

the foundation of the landfill, which implied the 

geomechanical characterization of the volcanic foundation 

mass (Neves et al., 1986). The study carried out referred to the 

application of numerical and analytical models to analyze the 

influence of natural cavities on the landfill's foundation rock 

mass. To this end, six drillings were carried out, which 

allowed the volcanic rock mass to be characterized. Also, 

uniaxial compression and discontinuous sliding tests on rock 

specimens resulting from drilling cores were performed. 

 

 
Fig. 6. São Miguel Island. Location of cases at Ponta Delgada 

and Porto Formoso.  

Fig. 7 shows an interpretative geologic profile of several 

boreholes. The foundation is made up of layers of basaltic lava 

and volcanic clinker with interspersed volcanic tuffs. The 

foundation structure is very complex due to the lithological 

heterogeneity of the formations with marked thickness 

variations. 

 At the borehole SM1, uniaxial compression tests were done 

as indicated in Table 6. Also, sliding tests were also carried 

out on a discontinuity at the same borehole, the results of 

which are presented in Table 7. 

 
Fig. 7. Interpretive geological profile of boreholes SM1, SM2, 

SM3 and SM5 (Adapted from Neves et al., 1986). 

 

Table 6. Uniaxial tests to basalt formations at the borehole 

SM1 (Adapted from Neves et al., 1986). 

Depth (m) E (GPa) c (MPa) Comments 

3 4.6 30.5 Basalt fractured 

13.9 (A) 11.5 41.7 Basalt very porous 

13.0 (B) 7.5 38.0 Basalt very porous 

 

Table 7. Shear tests in a discontinuity in basalt (Neves et al., 
1986). 

Applied stresses (MPa) KN 

.103 

MPam 

KT 

.103 

MPam 

i 

 

(ْ) 

Coulomb 

Strength 
(*) 

N Peak 
shear 

Resid. 

shear 

0.1 
0.3 
0.6 
0.9 

0.21 
0.50 
0.90 
1.30 

0.26 
0.49 
0.85 
1.27 

167 
 48 
 88 
 80 

2.0 
1.6 
2.6 
3.1 

11 
15 
16 
14 

cp=0.08 
cr=0.12 

p=53.6 ْ 
r=51.5 ْ 

(*) cp – peak coesion; cr – residual coesion; p – peak 
friction angle; r – residual friction angle. 

 

The survey of the different volcanic formations were the 

following; i) the basaltic formations were hard and compact, 

with a high percentage of recovery (80-100) and RQD 

between 50 and 100; ii) clinker settlements were very 

heterogeneous and with a high quantity of voids, percentage 

of recovery is very variable (20-80), and null RQD values; 

and iii) Volcanic tuffs are soft and poorly consolidated 

formations, with recovery percentages very low (20-60), 

and very low RQD values. 

For the basaltic formations and considering the borehole SM1, 

the following values of VRS and RMR were obtained: i) VRS 

values – maximum of 61 and minimum of 37, the 

classification of the rocks mass was III to V; ii) RMR values 

– maximum of 54 and minimum of 46, the classification of 

the rock mass was III. 

For the tuff formations and considering the borehole SM1, the 

following values of VRS and RMR were obtained: i) VRS 

values – maximum of 49 and minimum of 29, the 



classification of the rocks mass was IV to V; ii) RMR values 

– maximum of 54 and minimum of 46, the classification of 

the rock mass was III. 

The case 2 is related to a stability hazard study, using the VRS 

(Fernandez et al., 2025), of a slope near Porto Formoso, also 

in São Miguel Island, in the municipality of Ribeira Grande, 

located on the north coast, as shown in Fig. 8. Fig. 6 shows a 

map of the Island and the location of Porto Formoso. 

 
Fig. 8. Front view of the landslide at Porto Formoso 

(Fernandez et al., 2025). 

 

The volcanic formations involved are trachytes. These rocks 

were obtained from lava flows with acidic composition and 

high percentage of silicia. The VRS and RMR empirical 

systems were applied for these rocks being obtained the 

following values: i) VRS values – maximum of 74 and 

minimum of 50,  the classification of the rocks mass was class 

III  (reasonable) and class IV (regular); ii) RMR values – 

maximum of 89 and  minimum of 37, the classification was  

class I (rock mass very good) and class IV (bad rock mass), 

respectively (Fernandez et al., 2025). The comparison of the 

values shows an important discrepancy between both systems. 

This is due to the property P6 (adjusted due to the orientation 

of discontinuities in slopes). 

The case 3 is related to Lomba Grande landslides in the Island 

of Faial (Fig. 9). The Faial Island develops along an 

approximate WNW-ESE axis, with a maximum length and 

width of around 21 km and 14 km, respectively. It has an area 

of 170 km2 and is made up of two central volcanoes (Pacheco 

et al., 2017).  

Landslides occurred at Lomba Grande (Fig. 10) were 

triggered by the earthquake of July 1998. Five boreholes were 

carried out, with continuous sampling. The VRS and RMR 

empirical systems were applied for pyroclasts and the 

following values were obtained: i) VRS values – maximum of 

37 and minimum of 27, the classification of the rocks mass 

was V; ii) RMR values – maximum of 15 and minimum of 2, 

the classification of the rock mass was V (Fernandez et al., 

2025). 

 

 
Fig. 9. Geological cartography of the Island of Faial 

(Serralheiro et al., 1989).  

 
Fig. 10. Landslides occurred at Lomba Grande, Faial Island 

(Fernandez et al., 2025). 

  

5. New Subsystem Developed for Soft Volcanic Formations 

In this section, we leverage the adaptive learning capabilities 

of Machine Learning (ML) techniques to develop predictive 

models for the classification of VR masses. Specifically, we 

implement two distinct approaches to evaluate the 

effectiveness of ML-based classification. 

a) VR Class Prediction Using a Decision Tree Algorithm 

with VRS System Variables: this approach employs a 

decision tree algorithm to classify VR masses based on 

key attributes derived from the VRS classification. The 

predictive model utilizes six primary variables (P1, P2, 

P3, P4, P5, and P6) capturing essential geomechanical 

properties of the rock mass. 

b) VR Class Prediction Using a Decision Tree Algorithm 

with RMR System Variables: in this approach, the 

decision tree algorithm is applied to predict the classes of 

VR masses classes using the same six input variables 

(P1, P2, P3, P4, P5, and P6), but this time obtained from 

the widely recognized RMR classification system. This 

enables a comparative analysis between the classification 

frameworks and their influence on predictive accuracy. 

ML techniques are powerful computational tools capable of 

solving complex problems and have gained increasing 

prominence across various scientific disciplines over the past 



decade. These methods have been successfully applied in 

diverse knowledge domains (Javadi et al., 2012; Liao et al., 

2012; Garg et al., 2014), including civil engineering (Miranda 

et al., 2011; Miranda and Sousa, 2012; Gomes Correia et al., 

2013; Tinoco et al., 2014a; 2014b; He et al., 2015; Tinoco et 

al., 2016). Similarly, Data Mining (DM) techniques have been 

utilized in the analysis and characterization of rock masses 

(Martins and Miranda, 2012; Miranda et al., 2013; Miranda et 

al., 2014), further demonstrating their applicability in 

geotechnical engineering. 

The widespread adoption of ML for addressing real-world, 

complex problems underscores its potential and serves as the 

primary motivation for its application in this study. Notably, 

ML techniques have been employed in Rock Mechanics for 

projects such as the Venda Nova II and Bemposta II 

hydroelectric schemes in northern Portugal, where novel 

predictive models were developed to estimate the strength and 

deformability parameters of granite formations (Miranda and 

Sousa, 2012). Additionally, ML methods have been leveraged 

to assess new geomechanical models at the former Homestake 

gold mine in Lead, USA. In this case, ML algorithms were 

applied to widely used empirical classification systems, as 

RMR, Q-system, and GSI—alongside Bayesian Networks 

(BNs) to enhance the prediction of RMR values (Sousa et al., 

2012). Another notable application is the development of 

rockburst indices using ML techniques, where predictive 

models were trained on an extensive database of laboratory 

rockburst tests (He et al., 2015). A more recent study by 

Owusu-Ansah et al. (2023) further highlights the capabilities 

of ML techniques in predicting rockburst conditions. This 

research reinforces the growing body of evidence 

demonstrating the effectiveness of ML-based models in 

assessing geomechanical hazards, providing enhanced 

predictive accuracy compared to traditional empirical 

approaches. The study underscores the potential of ML in 

improving rockburst risk evaluation, contributing to safer and 

more reliable underground construction and mining 

operations. 

 

5.1 Modeling 

This section provides a brief overview of the different DM 

algorithms utilized in this research. 

A Decision Tree (DT) is a directed acyclic graph that 

represents a structured set of rules used to distinguish between 

different classes or predict values in a hierarchical manner. 

These rules are derived from the dataset using rule induction 

techniques and are expressed in an intuitive "If-Then" 

structure, allowing for simple yet effective conditional logic. 

The DT algorithm operates by recursively splitting the source 

data into smaller subsets based on attribute test values, 

progressively refining the decision process. Graphically, 

decision trees exhibit a characteristic branching structure 

composed of three main components: 

1. Root Node – The topmost node of the tree, representing 

the entire dataset before any partitioning occurs. 

2. Branches and Internal Nodes – Each internal node 

represents a test applied to an attribute, while the 

branches denote the possible outcomes of that test, 

directing the flow of decision-making. 

3. Leaf Nodes – Terminal nodes that represent the final 

class labels or predicted values after all relevant attribute 

tests have been performed. 

Once a decision tree has been trained, it can be used for 

classification or regression tasks by mapping new data 

instances through the learned tree structure. Decision trees are 

categorized into two primary types: 

 Classification Trees – Used for predicting discrete 

categorical outcomes by assigning data instances to 

predefined classes. 

 Regression Trees – Designed to predict continuous 

numerical values based on induced mathematical 

relationships. 

Among the various decision tree algorithms, the Classification 

and Regression Trees (CART) algorithm (Berry and Linoff, 

2000) is one of the most widely used methodologies for 

constructing decision trees. CART follows a binary tree 

structure, meaning that each internal node always produces 

exactly two child nodes. The algorithm partitions data at each 

step using a selected predictor, which may be applied multiple 

times at different hierarchical levels. The goal of each split is 

to maximize the homogeneity of the resulting subsets 

compared to the parent node, ensuring that instances within 

each subset share more similar characteristics. 

Despite its flexibility, the binary nature of the CART 

algorithm can introduce certain challenges. Specifically, it can 

become computationally intensive when handling large and 

complex datasets, and its reliance on repeated splits may 

sometimes result in overfitting. Overfitting occurs when the 

tree structure captures noise or outliers in the training data, 

leading to an overly complex and inefficient model. To 

mitigate this, pruning techniques are employed to simplify the 

tree by removing unnecessary branches, thereby improving its 

generalization capability on unseen data. 

One of the key advantages of decision trees, including CART, 

is their interpretability. They follow a “white-box” model, 

meaning that the decision-making process is transparent and 

can be easily understood by domain experts. This 

interpretability makes decision trees particularly useful for 

applications where model explainability is critical. However, 

as the complexity of the dataset increases, decision trees can 

become harder to manage due to a proliferation of branches, 

potentially reducing their efficiency and scalability. 

All experiments were conducted using the R statistical 

environment (R Core Team, 2009) and were facilitated by the 

RMiner package (Cortez, 2010). RMiner provides a user-

friendly interface for implementing various DM algorithms, 



including DTs. Additionally, it supports multiple validation 

techniques, such as cross-validation, enabling robust model 

assessment and performance evaluation. The use of RMiner 

streamlines the experimentation process by offering a 

structured framework for algorithm selection, model training, 

and validation, ensuring reliable and reproducible results. 

 

5.2 Model assessment 

To assess and compare the performance of the models, three 

classification metrics were employed based on the confusion 

matrix (Hastie et al., 2009): recall, precision, and F1-score. 

 Recall measures the proportion of instances belonging to 

a given class that were correctly identified by the model. 

Mathematically, recall for a particular class is defined as: 

TruePositives/(TruePositives +  FalseNegatives)  

 Precision quantifies the accuracy of the model when 

predicting a specific class, i.e., the proportion of 

correctly classified instances among all instances 

predicted as belonging to that class. It is expressed 

as TruePositives +  FalsePositives)  

 F1-score represents a balance between precision and 

recall, acting as a single performance metric that 

considers both false positives and false negatives. It is 

calculated as the harmonic mean of precision and recall: 

2 ∙
௣௥௘௖௜௦௜௢௡ ∙ ௥௘௖௔௟௟

௣௥௘௖௜௦௜௢௡ା௥௘௖௔௟௟
  

For all three metrics, higher values indicate better predictive 

performance. 

To ensure robust model evaluation, a 10-fold cross-validation 

approach (k = 10) was applied. In this technique, the dataset 

(P) is randomly partitioned into k mutually exclusive subsets 

(𝑃ଵ, 𝑃ଶ, ⋯ , 𝑃௞) of equal size (Hastie et al., 2009). The training 

and testing process is repeated k times, with each subset used 

once as a test set while the remaining k-1 subsets are used for 

training. The final model performance is obtained by 

averaging the errors across all iterations. While this method 

provides a reliable estimation of the model’s generalization 

ability, it requires approximately k times more computational 

effort, as k separate models must be trained and evaluated. 

Beyond model accuracy, interpretability is a critical aspect, 

particularly from an engineering perspective. To address this 

issue, Cortez and Embrechts (2013) introduced a 

visualization-based Sensitivity Analysis (SA) approach, 

which is applied in this study. SA is a post-training technique 

that examines model behavior by analyzing its responses to 

variations in input values. This allows for: 

 Quantification of the relative importance of each input 

feature 

 Understanding the average effect of each variable on the 

predicted outcome 

In particular, the Global Sensitivity Analysis (GSA) method 

was implemented, which is capable of detecting interactions 

among input variables. This is achieved by simultaneously 

varying multiple input parameters, while keeping the 

remaining inputs fixed at a baseline value. In this study: 

 The baseline value was set to the average input variable 

value 

 The number of variation levels was set to L = 12, striking 

a balance between computational efficiency and 

resolution 

Using GSA, various visualization techniques can be employed 

to analyze the model’s response. A key graphical 

representation is the input importance bar plot, which 

illustrates the relative influence (Ra) of each input variable in 

the model. The relative influence is derived from the gradient 

metric (ga) calculated for all inputs and computed as per the 

following equation: 

𝑅௔

=
𝑔௔

∑ 𝑔௜ ∙ 100(%)ூ
௜ୀଵ

ൗ     𝑤ℎ𝑒𝑟𝑒,    𝑔௔

= ෍ ห𝑦ො௔,௝ − 𝑦ො௔,௝ିଵห (𝐿 − 1)⁄

௅

௝ୀଶ

 

(2) 

 

where 𝑎 denotes the input variable under analysis and 𝑦ො௔,௝ is 

the sensitivity response for 𝑥௔,௝ . 

 

5.3 ML results discussion and interpretation 

A Hierarchical Volcanic Rock Mass Rating (HVR) system was 

developed using a DT algorithm, with input variables P1, P2, 

P3, P4, P5, and P6 derived from the VRS classification. This 

model, referred to as HVR, establishes a hierarchical decision 

framework for classifying volcanic rock masses based on 

these geomechanical parameters. 

A similar methodology was applied to develop the 

Hierarchical Rock Mass Rating (HRMR) system, where the 

same six input variables were instead sourced from the RMR 

classification system. This alternative approach allows for a 

comparative assessment of the predictive capabilities of both 

classification frameworks. 

Figs. 11 and 12 illustrate the decision trees generated under 

these two modeling strategies respectively, visually depicting 

the hierarchical classification rules derived from the 

respective datasets. Table 8 presents a comparative summary 

of the recall, precision, and F1-score values obtained for each 

class across all proposed models, offering a quantitative 

evaluation of their predictive performance. 

 



 
Fig. 11. Decision tree for VRS.  

 

 
Fig. 12. Decision tree for RMR system.  

 

Table 8. Models comparison based on recall, precision and 
F1-score. 

Class 
Recall Precision F1-score 

HVR HRMR HVR HRMR HVR HRMR 
1 0.00 0.00 0.00 0.00 0.00 0.00 
2 0.48 0.74 0.53 0.72 0.50 0.73 
3 0.49 0.71 0.55 0.62 0.52 0.66 
4 0.72 0.57 0.72 0.57 0.72 0.57 
5 0.52 0.00 0.47 0.00 0.49 0.00 
6 0.33 - 0.29 - 0.31 - 

 

Figs. 13 and 14 illustrate the observed versus predicted classes 

for the HVR and HRMR models, respectively. In these 

figures, the x-axis represents the actual observed class, while 

the y-axis depicts the predicted class. The color of the cell 

represents the number of correct predictions. 

Examining Fig. 13, it is evident that the HVR model struggles 

to correctly classify class 1, with its highest performance 

observed for class 4. Approximately 90% of VR instances that 

belong to class 1 (true condition) were misclassified as class 

2, while the remaining 10% were assigned to class 3. 

Similarly, the HRMR model (Fig. 14) also encounters 

difficulties in correctly identifying VR classes. The decision 

tree fails to classify both class 1 and class 5, highlighting 

potential limitations in the classification approach. The best 

performance is observed for class 2, where an F1-score of 

approximately 73% was achieved (Table 5). For classes 3 and 

4, the model demonstrates slightly better performance but still 

exhibits classification challenges. 

Fig. 15 presents the relative importance of each input variable 

for both the HVR and HRMR models. 

 In the HVR-based DT model, the three most influential 

variables are P2, P4, and P1, each contributing 

approximately 30% to the classification decision. 

 In contrast, the HRMR-based DT model identifies P1, 

P4, and P2 as the most critical variables, collectively 

accounting for 94% of the total influence on model 

predictions. 

These findings suggest that while both models rely heavily on 

P1, P2, and P4, their respective classification frameworks may 

lead to differences in predictive performance and class 

distinguishability. 

 

 
Fig. 13. HVR performance.  

 
Fig. 14. HRMR performance.  
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Fig. 15. HVR and HRMR relative importance.  

 

6. Concluding Remarks 

This paper presents a methodology for the geomechanical 

characterization of soft volcanic rock masses in the Azores 

archipelago based on the use of the new VRS. The islands of 

the archipelago are located in the Atlantic Ocean, in a highly 

tectonically active region, where three main tectonic plates 

meet. Consequently, the islands are affected by natural 

disasters, as earthquakes and volcanic eruptions.  The nature 

of the volcanic materials (internal factors), associated with 

external factors (i.e., earthquakes and particular conditions of 

weathering), contributes to the occurrence of other kind of 

natural hazard – the landslides.  

To make the use of VRS more effective and efficient, the 

adaptive learning capabilities of ML techniques were used to 

develop predictive models for the classification of soft 

volcanic rock masses. Similarly, DM techniques were used in 

the analysis and characterization of rock masses. Their use 

allowed to the expert to classify the soft rock masses and 

conclude on the correctness of the results, comparing VRS 

and RMR system, and their influence on predictive accuracy.  
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