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ABSTRACT 

This paper presents two variants of a general method (Cramer, Stanoev 2008), (Stanoev 2013, 

2014, 2016, 2017) for modal transformation of the equations of motion for multi-degree-of-

freedom-systems (MDOFS) with non-modal symmetric damping matrix. The first variant is 

described in comparison with a similar method, presented in earlier publications (Chu M. T., 

Buono N. T. 2008), (Ma Fai F., Morzfeld M., Imam A., 2010). The equations of motion are 

stated in state-space formulation. The final modal decomposition is performed by a purely 

real-space transformation matrix, which is derived by a combination of two complex 

transformations using the complex left and right eigenvectors of the associated special 

eigenvalue problem. The eigenvector normalization is performed in two different ways. 

Analytical expressions for all presented variants of the modal transformation basis are 

developed by the aid of computer algebra software. The proposed modal procedures retain all 

common advantages of the classic modal decomposition of the equations of motion. 

Keywords: structural dynamics, modal decomposition, left and right eigenvectors, complex 

eigenvalue problem, non-proportional damping. 

 

1 INTRODUCTION 

The solution of the classic linear eigenvalue problem, associated to the equations of motion of 

multi-degree-of-freedom-systems (MDOFS), consists of real eigenvalues (natural 

frequencies) and real eigenvectors. The inclusion of viscous damping in the equations of 

MDOFS leads to a quadratic eigenvalue problem with corresponding complex conjugate pairs 

of eigenvalues and eigenvectors.  

Starting point of our considerations are the equations of motion of a damped MDOFS in 

configuration space ��� + ��� + �� = 	
�� ,                                                                       (1.1) 

where  �,� and � are, respectively the (n x n) mass, damping and stiffness matrix, and �, �� , ��  are respectively the (n x 1) displacement, the velocity and the acceleration vectors and 

p(t) is the (n x 1) excitation vector.  

In structural mechanics problems the matrices �,� and � are considered to be real, 

symmetric and positive definite, excluding the presence of rigid body modes. In the classic 

modal analysis � = �, in this case Eq. (1.1) can be decoupled by use of the real right 

eigenvectors �� of the undamped system:  
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����	� + 	��	�� = �                                                                        (1.2) 

In the case of classically damped system with � ≠ � Eq. (1.1) can also be decoupled by the 

real eigenvectors of the undamped system. According to (T.K. Caughey, 1965) the necessary 

and sufficient condition for classical damping is: ����� = �����          (1.3) 

The proportional damping assumption  � = ��+ �� ,           (1.4) 

the so-called Rayleigh damping, is a particular case of classic damping - Eq. (1.4) satisfies the 

condition (1.3). 

The associated quadratic eigenvalue problem to Eq. (1.1) is ����� +��� +���� = �         (1.5a) 

where      λ� = �� + � !�;    λ� = �� − � !�                (1.5b) 

are complex conjugate eigenvalues. 

This paper presents two variants of a general method (H. Cramer, 2008), (E. Stanoev, 2013, 

2014, 2016, 2017) for real-space modal transformation of the equations of motion of multi-

degree-of-freedom-systems (MDOFS) with symmetric damping matrix, representing non-

proportional damping. The equations of motion are stated in state-space formulation. The first 

variant, presented in Section 2, is described in comparison with a similar technique for 

decoupling of non-classically damped system equations, referred to as phase synchronization, 

presented in earlier publications (Chu M. T., 2008), (Fai F. Ma, 2010), (Fai F. Ma, 2011). 

This approach has been described in (Fai F. Ma, 2009), (Fai F. Ma, 2010) for free and forced 

vibrations in configuration space formulation. In (Fai F. Ma, 2011) it has been shown the 

interpretation of the decoupling transformation by phase synchronization on the basis of state 

space formulation. 

The problem of decoupling the homogenous problem of Eq. (1.5) can also be addressed as a 

reduction of the quadratic pencil #
�� = ��� +�� + �. In (S.D. Garvey, 2002) and (M. T. 

Chu, 2008) have been proposed the notion of structure-preserving transformations in 

diagonalizing #
��. In (Fai F. Ma, 2011) it has been shown that transformation of (1.1) by 

phase synchronization can be interpreted as a diagonalizing structure-preserving 

transformation in state space if the eigenvalues λ�, λ� are complex and distinct. 

In Section 3 of this paper is presented a second variant for real-space decoupling procedure, 

based on both the right and the left complex eigenvector pairs. In this version the complex 

conjugated eigenvectors for the MDOFS are normalized with respect to the general stiffness 

matrix. 

In order to introduce to the solutions presented in Section 2 and 3, we will first briefly review 

in section 1.1 the phase synchronization procedure on the basis of state space formulation 

according to (Fai F. Ma, 2010), (Fai F. Ma, 2011) - for the case of forced vibrations with n 

distinct complex conjugated eigenvalues ��. 
1.1 The phase synchronization procedure in state space 

We suppose all eigenvalues  λ�, λ� 	 in (1.5b) to be complex conjugated and distinct, i.e. the 

quadratic eigenvalue problem is non-defective.  
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First of all, Eq. (1.1) should be written in state space in the symmetric Lancaster form, see (P. 

Lancaster, 1966): 

$� �� % &���� ' + $� −�% $��� % = &	
��'        (1.6) 

The associated state space eigenvalue problem takes the form 

($� �� %�� + $� −�%) & ������' = *���� & ������' = � 

→		 $� −�% & ������' = −�� $� �� % & ������'                (1.7a,b) 

The symmetrically linearized pencil *���� is referred to as the Lancaster structure. 

A complex modal transformation is defined by 

$��� % = & � ��	, �	,' $-.%         (1.8) 

where  - = /0� 0� ⋯ 0234	,						. = /5� 5� ⋯ 5234     (1.9a) 

are new complex modal coordinates, � = /�� �� ⋯ �23 ,      � = 6�� �� ⋯ �27                (1.9b) 

are modal matrices built by the complex ��  resp. the conjugate complex eigenvectors ��, and  , = diag/��, ��, ⋯ , �2	3  ,   , = diag6��, ��, ⋯ , �2	7               (1.10) 

are the associated spectral matrices. The transformation (1.8) implies that the j-th damped 

mode of vibration <�
�� is expressed as a linear combination  <�
�� = �� �=�>?@A�BCDCEF@ +�� (=�>?@A)BCDCEG@
                 (1.11) 

The eigenvectors �� may be normalized in accordance with  2����4��� + ��4��� = 2� !� = �� − ��     resp.     

2����4��� + ��4��� = −2� !� = �� − ��                                 (1.12a,b) 

Substitute Eq. (1.8) into (1.6) and pre-multiply by & � ��	, �	,'4 to obtain 

& � ��	, �	,'4 $� �� % & � ��	, �	,'BCCCCCCCCCCDCCCCCCCCCCE&-�.� ' + & � ��	, �	,'4 $� −�% & � ��	, �	,'BCCCCCCCCCCDCCCCCCCCCCE$-.% = I�4	
���4	
��J 
K�4�� + 2,
�4��� �4��+ 2,(	�4��)L $-�.� % + K�4��+ ,
�4���, �4��+ ,(�4��)	,L $-.% = I�4	
���4	
��J 

                      (1.13) 
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Accounting for the normalization [1.12a,b), the left side of Eq.(1.13) can be reformulated:  

&, − , , − ,' $-�.� % + I�, − ,�, �, − ,�,J $-.% = I�4	
���4	
��J                   (1.14) 

The state space form (1.6) is now decoupled in the complex form (1.14). Note that although 

Eq. (1.6) has been decoupled in state space, the new introduced complex variables $-.% , see 

Eq. (1.8), cannot be classified as displacements and velocities. 

The next step is to define a purely real 2n-dimensional vector /M4 N434 by $MN% = $O O, ,% $-.%                    (1.15) 

The inverse relationship of (1.15) is 

$-.% = $O O, ,%�� $MN% = K�, − ,�−1, 	�, − ,�−1�, − ,�−1, 	�, − ,�−1LBCCCCCCCDCCCCCCCEQ
$MN% = Q $MN%              (1.16) 

The reason of the definition (1.15) and its inverse (1.16) is better clarified in Sec. 2, see Eq. 

(2.16), (2.18), (2.23). 

Finally we substitute Eq.(1.16) into (1.14) and then pre-multiply the resulting equation by Q4 

to obtain the real-space relationship 

I�, − ,����−,,+ ,,� OO �J &M�N� ' + I�, − ,����,	,	, − ,	,	,� 			�� −OJ $MN% = R�, − ,�
�� (,�4 − ,�4) 		
���, − ,��� (�4 −�4) 		
�� S 

$�T OO �% &M�N� ' + $UT 			�� −O% $MN% = IVT4		
��VW4		
��J                  (1.17) 

where �T, UT, VT and VW are real-space matrices (what can easy be checked): 

�T = �, − ,����−,, + ,,� = −X�0Y6�� + ��, ⋯ , �� + �� , ⋯ , �2 + �27 = −X�0Y62��, ⋯ , 2��, ⋯ , 2�27 
                        (1.18) 

UT = �, − ,����,	,	, − ,	,	,� = X�0Y6����, ⋯ , ���� , ⋯ , �2�27 = X�0Y6��� + !�� , ⋯ , ��� +  !�� , ⋯ , �2� +  !2� 7 
                        (1.19) VT = ��, − �,��, − ,�−1                      (1.20) VW = �� − ���, − ,�−1                    (1.21) 

The upper and lower halves of the final uncoupled equations (1.17) are N� + �TM� + UTM = VT4		
��                   (1.22) M� − N = VW4		
��                                 (1.23) 

Expressing N from (1.23) and replacing it in (1.22) we get M� + �TM� + UTM = VT4		
�� + VW4		� 
��                 (1.24) 

Eq. (1.24) is the transformed uncoupled real-space form of the original equations of motion 

(1.1), the introduced n-dimensional vector M can be referred to as modal coordinates. The 
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relationship between the modal coordinates M and the solution original Z of the original 

system (1.1) can be derived by combining the first complex transformation (1.8) with the 

complex transformation introduced by (1.15): 

$��� % = & � ��	, �	,' $-.% = & � ��	, �	,' $O O, ,%�� $MN%               (1.25) 

The upper half of (1.25) is � = ��, − �,��, − ,�−1M + �� − ���, − ,�−1N = VTM + VWN            (1.26a) 

and, accounting for Eq.(1.23): � = VTM + VW (M� − VW4		
��)                (1.26b) 

By use of Eq.(1.23) the real-space solution (1.25) can be rewritten in state space  

&�
���� 
��' = & � ��	, �	,' $O O, ,%�� & M
��M� 
�� − VW4		
��'                          (1.27) 

The inverse transformation is  

&M
��M� 
��' = $O O, ,% & � ��	, �	,'�� &�
���� 
��' + & �VW4		
��'               (1.28) 

 

2 MODAL TRANSFORMATION PROCEDURE BASED ON THE COMPLEX 

RIGHT EIGENVECTORS 

2.1 Complex modal transformation of the MDOFS equations 

In this section is described a procedure, similar to the phase synchronization method in state 

space formulation, presented in Section 1. We will consider the case of forced vibrations with 

n distinct complex conjugated eigenvalues ��, see	Eq. 
2.3�,	what is the most relevant case in 

structural mechanics based on finite element formulation.  

The detailed development of the procedure differs in some points from the decomposition 

method based on the Lancaster form (1.6). The description of the differences in details, 

compared to the development steps in Section 1, aims to outline the structural mechanics 

background of the utilized mathematical transformations. 

At first the equations of motion (1.1) are recast to first order equations in state space: 

$� −�%BCCDCCE�a
&���� 'bc� + $

� �� %BCDCE�a
&���'bc = &d
��'BDEe        (2.1) 

where �a and �a are, respectively the (2n x 2n) symmetric generalized mass and the 

generalized stiffness matrices. The formulation in state space (2.1) doesn’t use the Lancaster 

form (1.7a), but retains the symmetry in the generalized matrices.  

The associated quadratic eigenvalue problem can be written in the 2n-dimensional form 

��
���a +�a� &�
���
���
�� ' = �        (2.2) 

where 



Symp-13: Structural Dynamics and Control Systems. Theory, Experiments and Applications 

 

 

 

-1206- 

�
�� = �f
�� + ��g
�� 	→ 	 &�
���
���
�� ',									�
�� = �f
�� − ��g
�� 	→ 	 I�
���
���
�� J , 
h = 1,… , j� (2.3) 

are the corresponding  n complex conjugate eigenpairs. 

Each j
th

 eigenvector-pair �
��, �
�� can be normalized (index (j) omitted) with respect to the 

general mass matrix �a: 

$��� %4 $� −�% $��� % = k + �l			 → 	m = �√opgq = mr + �ms    (2.4a) 

&��� '4 $� −�% &��� ' = k − �l			 → 	m = �√o�gq = mr − �ms              (2.4b) 

The mass normalization (2.4) leads to the orthogonality relationships (2.5), (2.6) - expressed 

in terms of the j
th

 eigenvector-pair (index (j) omitted): 

&�m �mm m '4 $� −�% &�m �mm m ' = $ 1 1 %      (2.5) 

&�m �mm m '4 $� �� % &�m �mm m ' = &−� −�'      (2.6) 

Then the (2n x 2n) complex modal matrix ma can be built up:    

ma = I�
��m
�� �
��m
�� ⋯ �
2�m
2� �
2�m
2�
m
�� m
�� ⋯ m
2� m
2� J     (2.7) 

Note the difference to the form of Eq. (1.8), (1.9) - the complex eigenvectors �	and the 

conjugated complex � are split, but in (2.7) they are in pairs. 

Complex modal decomposition of the equations of motion (2.1) can be performed by use of 

the orthogonality relationships (2.5), (2.6): 

maV $� −�%maBCCCCDCCCCE
K � ⋯ � L

	 ∙ u� 	+ 	 maV $� �� %maBCCCCDCCCCE
vww
wwx
�?
y� �?
y� ⋯ �?
z� �?
z�{|

|||
}
∙ 	u = 	 maV 	&d
��'BCCDCCE

vww
www
wwx
?
y��m
y��~d
?
y��m
y��~d⋯?
z��m
z��~d
?
z��m
z��~d{||

|||
||}
  (2.8) 

where the new complex modal coordinates �  are introduced by Eq. (2.9): 

&���' = ma	u
�� = ma	/0
��
�� 5
��
�� ⋯ 0
2�
�� 5
2�
��3V   (2.9) 

According to the assembly of the global modal matrix ma in (2.7) the complex coordinates 0
��, 5
�� in the definition (2.9) remain in pairs, corresponding to the eigenvalue pair 
�
��, �
��, whereas in the definition (1.8) in Section 1 they are separated. In comparison to the 

analogous decoupling transformation (1.14) the uncoupled modal equations (2.8) have - due 

to the mass normalization (2.4) - a very clear and more simple form of the modal mass matrix 

(equal to the unity matrix) and of the modal stiffness matrix (equal to the spectral matrix). 
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In a next step a second transformation of the complex modal equations (2.8) will be 

introduced in order to get 
h = 1,… , j� uncoupled single oscillator equations in real space. To 

explain better this step, the equation of a single- degree-of-freedom system (SDOFS) is 

considered in the next section. 

 

2.2 The single mass oscillator equation 

The equation of motion of a viscously damped single degree of freedom system (SDOFS) ���
�� + =��
�� + ��
�� = �
��    (2.10) 

can be written in the extended form 

$ 1 − �%BCCDCCE�
&��
����
��'BDE�� + &2�  � � 'BCCDCCE�

&��
���
��'BDE� = &�
��'BDEd 										← 	� = &��
���
��'  

��� + �� = d                (2.11) 

where  ��  is acceleration,  ��    - velocity, �
�� - displacement,   = ��� - free vibration 

frequency, � = ���� - Lehr’s damping ratio and  �
�� = �
A��  . 

Introducing the exponential approach  � = M>?A and the (2 x 2) matrix - - = ����                     (2.12) 

into the homogenous form of the differential equation (2.11) leads to the quadratic eigenvalue 

problem �� + 
�����BCDCE- � = �							 → 			 �- + ����r� = �				
h = 1,2�                (2.13) 

The solution are two complex conjugate eigenvalues ( 1<<η , subcritical damped system):  � = �f + 	��g = � + � !� = �f − 	��g = � − � !	�		  where    �f = −� = �	,				�g =  �1 − �� =  !            (2.14) 

The natural frequency     and the damping ratio  �  can be determined from (2.14) to  = �
�f�� + 
�g�� ,      � = − ?��              (2.15a,b) 

The corresponding complex conjugate right eigenvectors in Eq. (2.13) are 

 r� = $�f ± 	��g1 %							
h = 1,2�                    (2.16) 

After normalization of the eigenvectors with respect to the mass matrix 

/r� r�34 ∙ � ∙ /r� r�3 = &Y� Y�' 							→ 		�� = r@��@ 							
h = 1,2�             (2.17) 

the (2 x 2) modal matrix � is cast: � = /�� ��3                                    (2.18) 

The mass normalization (2.17) leads to orthogonality relations and their inverse relationships: 
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�4	�	� = �4 $ 1 − �%� = $ 1 1 % 			↔ 				 
�4��� $ 1 1 %��� = $ 1 − �%     2.19) 

�4	�	� = �4 &2�  � � '� = &−� −�' 	↔ 			 
�4��� &−� −�'��� = &2�  � � ' (2.20)  

The inverse of the complex modal matrix �
 , �� can be expressed analytically by the aid of 

computer algebra software - see Eq. (2.21), (2.22a,b). 

��� = ������� &−�� − ��� 	� − �#−�� + ��� 	� + �#'                 (2.21) 

where 

�� = ��1 − �� + 
1 − ���  �� = ��1 − �� − 
1 − ���            (2.22a) 

� =  ����1 − �� − ����  # =  ����1 − �� + ����              (2.22b) 

 

2.3 Final decomposition of the MDOFS equations in real space 

We come back to the uncoupled complex modal equations (2.8). Here the complex modal 

coordinates /0
�� 5
��34, see Eq. (2.9),  will be replaced by new real coordinates /�
�� �
��34 for each j-th eigenpair, introduced by the definition (2.23): 

I0
��
��5
��
��J = ��
����� I�
��
���
��
��J	,												&0� 
��5� 
��' = ��
����� &�� 
���� 
��'               (2.23) 

Taking into account (2.23), the modal equations (2.8) can be transformed in pairs into the 

real form of SDOFS-equation (index (j) omitted), with regard to the inverse relationships 

(2.19), (2.20): 


�4��� $ 1 1 %���BCCCCCDCCCCCE ∙ &���� ' +	 
�4��� &−� −�'���BCCCCCCDCCCCCCE ∙ $��% = 
�4��� I�m4d
���m4d
��JBCCCCCDCCCCCE
$ 1 − �% ∙ &���� ' + &2�  � � ' ∙ $��% = &Y
��ℎ
��'

         

                       (2.24) 

Note that the matrix ��
����� can be expressed according to Eq. (2.21), (2.15a,b) simply by 

the real and imaginary parts �f
��, �g
��. 
Combining the two complex transformations (2.8) and (2.24), a new (2n x 2n) transformation 

basis ¡ can be defined: 

&���' = I�
��m
�� �
��m
�� ⋯ �
2�m
2� �
2�m
2�
m
�� m
�� ⋯ m
2� m
2� J ¢��
����� ⋯ ��
2����£BCCCCCCCDCCCCCCCE¤¥y vw

ww
x�
���
��⋯�
2��
2�{|

||
}

BDE�
= ma 	 ∙ ¤��BCCDCCE¡ ∙ �		 

&���' = ¡ ∙ �                      (2.25) 
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By the aid of the transformation (2.25) and with regard to (2.8) and (2.24), the equations of 

motion (2.1) can be decomposed into n real uncoupled SDOFS block equations as follows: 

¡4 ∙ $� −�% ∙ ¡BCCCCDCCCCE
vw
ww
x � ��y� ⋯ � ��z� {|

||
}
∙
vw
ww
x�� 
���� 
��⋯�� 
2��� 
2�{|

||
}

BDE��
+	 ¡4 ∙ $� �� % ∙ ¡BCCCCDCCCCE

vww
wwx
��y	�y �y��y� ¦ ⋯ ��z	�z �z��z� ¦ {||

||}
∙
vw
ww
x�
���
��⋯�
2��
2�{|

||
}

BDE�
=	¡4 ∙ $ d %BCDCE

vww
wx�y§y⋯�z§z{||

|}
            (2.26) 

It can be shown that the ¡-matrix and all „load“-vectors  /Y
�� ℎ
��34  in Eq. (2.26) are 

purely real. In (E. Stanoev, 2013, 2014) has been shown that after component multiplication 

of the analytically expressed terms of ma and of ¤�T all imaginary parts cancel each other.  

The transformation in Section 1, analogously to (2.23), is given by Eq. (1.16). The advantage 

of the (2 x 2) transformation used in (2.24) is that it is done on the level “SDOFS-equation”, 

employing mass normalization for the modal matrix � - see Eq.(2.17). In contrast to this in 

the relationship (1.16) a (2n x 2n) matrix $O O, ,% has to be inverted. Besides the analytical 

inversion of the simple (2 x 2) matrix �
�� in (2.21), the definition (2.23) seems quite natural 

in order to transform the complex modal equations (2.8) back to the real form of SDOFS - as 

seen in (2.24).  

The mechanical reason of the relationship (1.16) and the inverse form (1.15) is clarified by 

looking at the eigenvectors (2.16) of the SDOFS. Due to the inverse order of displacements 

and velocities $��� % in the Lancaster form (1.6) in compare to the formulation (2.1) the meaning 

of the modal coordinates �
��, �
�� here is interchanged, compare Eq. (1.24) and (2.28). 

Each SDOFS block equation in (2.26) can be solved eliminating the modal coordinate �
��  to 

obtain the usual form of the SDOFS equation of motion (index (j) omitted):  

�
�� = �� + ��� ℎ
��                               (2.27) 

�� 
�� + 	2� 	�� 
�� +  ��
�� = Y
�� − ��� ℎ
�� − ��� ℎ� 
��                          (2.28) 

A usual numerical step-by-step integration of Eq. (2.28) yields the modal response �
��
��. 
The final time series of the original 2n state variables &���' are calculated by superposition of 

the modal coordinates �
��, �
�� (assembled in �) in accordance to Eq. (2.25).  

The final SDOFS equations from type (2.28) for each j-th eigenpair can be rebuild in the 

uncoupled diagonal form (1.24) for the MDOFS - note that �
�� in (2.28) corresponds to x
�� 
in (1.24). The right sides of both equations clearly correspond to each other. 

 

2.4 Analytical form of the uncoupled equation system  

We introduce a notation of two columns, belonging to each j
th

 eigenvector-pair in the real (2n 

x 2n) matrix ¡, defined in Eq. (2.25): 
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¡ = K⋯ ¡¨�
�� ¡©�
�� ⋯⋯ ¡¨�
�� ¡©�
�� ⋯L                   (2.29) 

The analytical expressions for (2.29) can be derived using Eq. (2.4), (2.7), (2.21) and 

(2.22a,b), index (j) omitted: 

¡¨�
�� = 1�1 − �� ª(��	 �1 − �� + � ��)mr + (��	 �1 − �� − � ��)ms« ¡¨�
�� = ������ 
−��mr + ��ms�             (2.30a-b) 

¡©�
�� = 1�1 − �� 
 ���mr −  ���ms� ¡©�
�� = ������ ª���	 �1 − �� − � ���mr + ���	 �1 − �� + � ���ms«              (2.30c-d) 

The two components of the associated j
th

 “load” vector, defined in Eq. (2.26), are purely real 

too: Y�
�� = ������ 	ª����1 − �� + ����mr4 +	����1 − �� − ��	��ms4«	d
��                  (2.31a) 

ℎ�
�� = ������� 	¬��mr4 − ��	ms4­	d
��                 (2.31b) 

 

3 MODAL TRANSFORMATION PROCEDURE BASED ON BOTH COMPLEX 

RIGHT AND LEFT EIGENVECTORS 

3.1 Complex modal decomposition of MDOFS equations with non-modal damping 

Here is presented a variant of a modal decomposition method, operating with right and left 

complex eigenvectors of the u-matrix - see Eq. (3.2a), (3.3). The procedure has been first 

presented in details in (E. Stanoev, 2017). Here is given a briefly description. 

The state-space form of equations of motion (2.1) is transformed in two variants using the 

substitution 

® = $� �� % &���' = �ac ,           ®� = �ac�        (3.1) 

1
th

  variant:  c� +	�a�T	�aBCDCEu 	c = �a�T	e 

2
th

  variant:   	�a	c�BDE + �a	�a�T 	
�a	c�BCDCE = �a	�a�T	e®� + �a	�a�T	® = �a	�a�T	e               (3.2a,b) 

With the notation  u = �a�T	�a           (3.3) 

and due to the symmetry of �a and �a the relationship (3.4) hold:  �a	�a�T = �a4 	��a�T�4 = ��a�T	�a�4 = u4      (3.4) 
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The modal decomposition of the equations (2.1) will be based on the right and left complex 

conjugated eigenvectors ¯
�� and  °
�� of the u-matrix, calculated from (3.2a) resp. (3.2b): �u + �
��±�¯
�� = �  resp.        �u4 + �
��±�°
�� = �           (3.5a,b) 

According to the formulations (3.2a) and (3.2b) a relation between an arbitrary j
th

 right and 

left eigenvector can be derived: °
�� = �a	¯
��	           (3.6) 

The eigenvector pairs are collected in the right and the left modal matrices ¯ resp. °:  ¯ = 6¯
�� ¯
�� ⋯ ¯
2� ¯
2�7    resp.     ° = 6°
�� °
�� ⋯ °
2� °
2�7       (3.6a,b) 

The main diagonal components ²
h� in the orthogonality relation (3.7) between the right and 

left modal matrices  

¯³° = ¯³�a¯ =
vw
www
x²1 ²1 ⋯ ²j ²j{|

|||
}
                            (3.7) 

are used to normalize both modal matrices: 

m
��¯ = ¯
@��´@ 						→ 			m¯ = $m
��¯ m
��¯ ⋯ m
2�¯ m
2�¯ %	    (3.8a) 

m
��° = °
@��´@ 						→ 			m° = $m
��° m
��° ⋯ m
2�° m
2�° %	    (3.8b) 

The normalization (3.8) leads to the relationships 
m°�4	m¯ =	 
m¯�4	m° = ±        (3.9) m¯ =	 ¬
m°�4­�� 				↔ 				 
m¯�4 = 
m°���	               (3.10) 

where ± is a (2n x 2n) identity matrix.  

In order to derive the diagonalization of the u4-matrix the eigenvalue problem (3.5b) is 

reformulated by use of the µ°-matrix: u4m° +m°	¶ = �					 → 		u4 = m°	
−¶�
m°��� 			↔ 			−¶ = 
m°���u4m°   (3.11) 

where    ¶ = ·λ
��¸												
h = 1,2, … , 2j�     is the spectral matrix of u. 

In analogy to Eq.(2.9) new complex coordinates ¹° are introduced by 

® = $� �� % &���' = m°	¹°
�� = 	m°/0
��
�� 5
��
�� ⋯ 0
2�
�� 5
2�
��34    (3.12) 

Including the modal coordinates from (3.12) into (3.2b), the equations of motion are 

transformed into a set of 2n uncoupled complex equations: 
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m°���±	m°BCCCDCCCE
K � ⋯ � L

	¹� ° + 
m°���	�a	�a�Tm°BCCCCCDCCCCCE
vww
wwx
�?
y� �?
y� ⋯ �?
z� �?
z�{|

|||
}
	¹° = 
m°���u4eBCCDCCE

vww
wwx
º»y¼º½y¼⋯º»z¼º½z¼ {||

||}             (3.13) 

 

3.2 Alternative form of the equation of single mass oscillator 

The form (2.11) of the general eigenvalue problem and his solution - Eq. (2.13), remain the 

same. The eigenvectors ¾� 		
h = 1,2� are right eigenvectors of the matrix  - = ����. In 

order to determine the left eigenvectors of the matrix - we introduce the substitution 

&¿�¿�'ÀÁ = &2�  � � 'BCCDCCE�
$���%b� 	 Á = ��   (3.14) 

An alternative form of the equation of motion is  ���b + �
������ = �	���dÁ� + �	���Á = �	���d                

$ 1 1 %BCDCE�
I¿��¿��JÀÁ� + &

2� −1 � 'BCCDCCE��¥y
&¿�¿�'ÀÁ = &2� −1 � 'BCCDCCE��¥y

&�
��'BDEd 										             (3.15) 

The corresponding eigenvalue problem is  

Â�	���BDE-~ + �
���Ã Ä = � .                   (3.16) 

The -4-matrix in (3.16) is formulated due to the symmetry of � and �:  -4 = 
�����4 = �4	
����4 = �	���                   (3.17) 

The two eigenvalues  �, � of (3.16) remain the same - Eq. (2.14), but the corresponding 

complex conjugate eigenvectors are now 	Ä�	Ä�Å = Äf ± �Äg = I�∓g������1 J                        (3.18) 

Rewriting the eigenvalue problem (3.16) to Ä�4�- + �
���� = �4 				→ 							 �-4 + �
����Ä� = � ,                 (3.19) 

we recognize that Ä� represents the left eigenvectors of the matrix - = ���� (respectively, 

the right eigenvectors of the matrix -4 = �	���). 

In this variant the modal matrix is defined without normalization by 

�Ç = /Ä� Ä�3 = I��g������1 �pg������1 J                  (3.20) 
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Rewriting the eigenvalue problem in the „left“ formulation (3.19) using the �Ç modal matrix  

-V�° +�°È = �									 ← 			É = & � � '                (3.21) 

The diagonalization of the matrix -V and the inverse relation can be developed to -V = �°
−È�	
�°��� 						↔ 				−È = 	 
�°���-V	�°              (3.22) 

where  


�°��� = ������� I			� �1 − �� − ��−� �1 − �� + ��J                 (3.23) 

 

3.3 Transformation of the MDOFS equations in real space 

We introduce into the uncoupled complex modal equations (3.13) new real coordinates /�
�� �
��34 for each j-th eigenpair, defined by  

I0
��
��5
��
��J = ��°
����� I�
��
���
��
��J°	                  (3.24) 

With (3.24) the modal equations (3.13) can be transformed in pairs into the real form of 

SDOFS-equation (index (j) omitted), with regard to (3.22): 

�° $ 1 1 % 
�°���BCCCCCDCCCCCE ∙ &���� '° +	 �° &−� −�' 
�°���BCCCCCCDCCCCCCE ∙ $��%° = �° I�FÊ�GÊJBCDCE
$ 1 1 % ∙ &���� '° + &2� −1 � ' ∙ $��%° = &YÊ
��ℎÊ
��'

            (3.25) 

A purely real (2n x 2n) transformation basis ¡° can be built up by combination of the two 

complex transformations (3.12) and (3.24): 

® = $� �� % &���' = m° 	¢��
°
����� ⋯ ��°
2����£BCCCCCCCCDCCCCCCCCE
¤Ë�¥y vww

wx����⋯�2�2{||
|}
°
= m°	
¤Ì���BCCDCCE¡° �° = ¡°	�°           (3.26a) 

With regard to Eq. (3.10) the inverse of the transformation basis ¡° can be written to 

¡°�� = ¤Ì ∙ 
m°��� = R��°
��� ⋯ ��°
2��SBCCCCCCDCCCCCCE¤Ë
∙ 
m¯�4                       (3.26b) 

Finally the equations of motion (3.2b) can be uncoupled by means of the transformation basis ¡° and the inverse matrix ¡°�� into n real-space SDOFS block equations from type of (3.25): 
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¡°�� ∙ ± ∙ ¡°BCCCDCCCE
vww
wx � � ⋯

� {||
|}
∙
vw
ww
x�� 
���� 
��⋯�� 
2��� 
2�{|

||
}°

BDE�� °
+	 ¡°�� ∙ ��a	�a�T�ÍÎÎÏÎÎÐuV ∙ ¡°BCCCCCCDCCCCCCE

vww
wwx
��y	�y ���y� ¦ ⋯ ��z	�z ���z� ¦ {||

||}
∙
vw
ww
x�
���
��⋯�
2��
2�{|

||
}°

BDE�°
=	¡°�� ∙ uV $d %BCCCDCCCE

vww
wx�y§y⋯�z§z{||

|}
°

          (3.27) 

The solution of each j
th

 SDOFS block equation in (3.27) is performed eliminating first the 

modal coordinate �
�� (index (j) omitted):  

$ 1 1 % &���� '° + &2� −1 � ' $��%° = &YÊ
��ℎÊ
��'                    (3.28) 

Introducing the second equation 

� = − ©��� + §¼��     (3.29a) 

into the first one to receive �� + 2� 	�� +  �	� = − �	YÊ + 2� 	ℎÊ + ℎ� Ê    (3.29b) 

The modal response �
�� is easy determined by step-by-step integration of Eq. (3.29b),  �
�� 
should be calculated according to (3.29a). The final time response of the original n DOFs is 

calculated by superposition of the modal coordinates in accordance to Eq. (3.26) and (3.1): 

&���' = 
�a���	¡°	�°     (3.30) 

 

3.4 Analytical form of the real modal transformation  

The components of the real space matrix ¡°, which belong to the j
th

 eigenvector-pair, are the 

following two columns - see (3.23), (3.26), (index (j) omitted): 

$⋯ 
¡¨�
�� �¡©�
�� ⋯% = /mf° + �mg° mf° − �mg°3 ∙ 	 12�1 − �� I			� �1 − �� − ��−� �1 − �� + ��J 
                     = ������ 6⋯ − 	mg° 				�mf°�1 − �� +mg°	�� ⋯7       (3.31) 

The associated two components of the “right side” vector in (3.27) are - with regard to (3.26) 

and (3.10) - fully real too: 

vw
ww
x⋯YÊℎÊ⋯{|
||
} = 
¡°���u4e = ¤Ç 
m°���BCDCE
m¯�Ñ u4e =

vw
ww
wx ⋯�� (�	
mf̄ �Ò +�1 − ���mḡ �Ò)2
mf̄ �Ò⋯ {|

||
|} u4e            (3.32) 
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4 NUMERICAL EXAMPLE  

4.1 Structural data,  geometry and loads 

The numerical example considers the vibrations of a small rotor blade subjected to wind 

thrust load, it has been first presented in (E. Stanoev, 2017). The equations of motion in the 

form (3.2) are solved applying the proposed modal decomposition method in Section 3 

employing only the first four lowest natural frequencies and the associated four eigenmodes. 

Considered are two cases: non-proportional and proportional damping.  

The finite element solution is based on the numerical integration of the system of differential 

equations for the Bernoulli-beam. The reference axis of the beam model coincides with the 

centre of the circular-section at the root. Thereby the differential equations and all cross 

section stiffness data are referred to the real rotational axis of the rotor blade, accounting for 

the eccentric mass application.  

 
Fig. 1 - Rotor blade beam model subjected to wind loads  

The stiffness data of the blade thin-wall cross sections have been calculated in (Nan Li, 2015). 

The generic aerodynamic blade geometry has been derived from real blade data.  

The wind loads are calculated according to the formula for the aerodynamic lift force per unit 

length of an aerofoil, see (T. Burton, 2011), p. 59: * = ��Ó ∙ 	=
Ô� 	 ∙ Õ� 	 ∙ ÖÊ          (4.1) 

where:  Õ  : air velocity relative to the aerofoil 

  Ó  : air density = 1.225 [kg/m
3
] 

        =
Ô� : chord of the aerofoil 

  ÖÊ  : lift coefficient  ÖÊ = 2×	� = 2× ( Ø�Ù¦ 6.0) = 0.658,   

  the flow angle � is assumed to be 6.0 [deg] 
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The air velocity Õ is the vector sum of the rotational speed Ω (assumed to reach 60 rpm in 

the initial four seconds) and the wind speed ß, incident on the aerofoil in accordance with the 

Betz-theory (T. Burton, 2011): 

Õ = �
Ω	Ô�� +	(�àß)�       where  Ω = (á¦à¦×) in [rad/s]     (4.2) 

Time series of a real wind speed measurements  ß
�� are used to calculate the wind thrust 

force, shown in Figure 2:  

 

Fig. 2 - Wind thrust function acting on the rotor blade at 12.5 m 

The resulting wind thrust loads T
�� per unit length along the x-axis of the rotor blade can be 

determined as function of the wind speed ß
��. In the structural model the wind thrust loads 

are acting as summarized nodal forces - see fig. 1. 

 

4.2 The damping approach 

In order to determine the proportional damping matrix �d, see the equations of motion (2.1), 

the lowest four natural frequencies and associated periods for the undamped system are 

calculated to be ¿� = 2.643		/ã��3 ³� = 0.378		/ã3¿� = 4.622		/ã��3 ³� = 0.216		/ã3¿à = 7.942		/ã��3 ³à = 0.126		/ã3¿æ = 16.650		/ã��3 ³æ = 0.060		/ã3
                   (4.3) 

Stiffness proportional damping as a special case of Rayleigh damping has been assumed: 

�d = �	�      where   � = ���y = �	4yØ = 0.000964/ã3                (4.4) 

In Eq. (4.4) the damping ratio  � = 0.008 for the first natural period ³� has been taken in 

accordance with [21] p. 249. 

The non-proportional symmetric damping matrix �çd, including structural (proportional) and 

aerodynamic damping is build by 
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�çd = �d +�-                      (4.5) 

where the matrix �- represents aerodynamic damping. The formulation is based on a simple 

expression for the aerodynamic damping coefficient =è
Ô� per unit length, given in (T. 

Burton, 2011), p. 247: =è
Ô� = ��Ó ∙ 	ΩÔ	 ∙ =
Ô� ∙ èé¼èê       $��ë ��%,      where       
èé¼èê = 2×    (4.6) 

The associate symmetric damping matrix �- for the Bernoulli-beam element is derived by 

analogy with the method presented in (E. Stanoev, 2007) for the finite-element mass matrix, 

for more details see (E. Stanoev, 2017).  

 

4.3 Non-proportionally damped system 

System damping matrix here is �çd - Eq. (4.5). The vector of the first ten complex conjugate 

eigenvalue pairs of the matrix u = �a�T	�a, see Eq. (3.5), is  

 

 

 

 

 

            (4.7) 

 

 

 

 

 

 

The number of modes considered in the modal transformation is limited to the first four 

eigenvector pairs. The structural system in Figure 1 has 54 DOF. The corresponding (108x8) 

normalized modal matrix m° - Eq. (3.8b), is computed to (only the first ten rows are printed) 

 

                        (4.8) 

The matrix 
¤Ì��� is calculated in the case of four involved eigenmodes according to Eq. 

(3.26a), (3.23): 
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¤Ì��� =
vww
wwx
��°
����� ��°
����� ��°
à���� ��°
æ����{||

||} =   

 
(4.9) 

Finally the (108x8) real transformation matrix ¡° is computed according to (3.26a) - here only 

the first ten rows: 

  

 

 

 	ì = 

 

 

  

  

                                 (4.10) 

After the modal transformation the time-dependent “load” vector is calculated to be a function 

of the wind thrust time series, see Figure 2: 

 

vww
wxY�
��ℎ�
��⋯Yæ
��ℎæ
��{|

||}
°
= ¡°�� ∙ uV $ d % =                           (4.11) 

 

 

 

Four uncoupled SDOFS block equations from type of Eq. (3.25) are solved by step-by-step 

integration according to (3.29a-b):  
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vww
wx 1 − �� ⋯ 1 − 2�{|

||} ∙ vww
wx������⋯��2��2{|
||}í��
+
vww
wwx
2��	 �  �� �� 0 ⋯ 2�2	 2  2� 2� 0 {||

||} ∙
vww
wx����⋯�2�2{||
|}

í�
=
vww
wxY�ℎ�⋯Y2ℎ2{||

|} , 
j = 4� 
                           (4.12) 

 

where  / g3 = 

 

               /�g3 =      (4.13a,b) 

 

The vibration-response in the next figures has been determined in the time 0… 25.6 s, the 

time step length for the applied Newmark integration method is 0.03665 s. 

The time response of the modal coordinates  ��
��, ��
��, 
h = 1,2,3� are shown in Figures 

3a-c: 

 

Fig. 3a - Time response of the modal coordinates ��
��, ��
�� for the case “non-proportional damping” 

 

 

 

Fig. 3b - Time response of the modal coordinates ��
��, ��
�� for the case “non-proportional damping” 
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Fig. 3c - Time response of the modal coordinates �à
��, �à
�� for the case “non-proportional damping” 

The total responses for the original state variables �
��, �� 
��, obtained by a back 

transformation according to Eq. (3.30), are plotted in Figures 4-6 for the rotor blade tip: 

 

 

Fig. 4 - Total vibrations  ß�
��, ßà
��		/�3  (in y- and z-direction, see Fig.1) at the rotor blade tip - node #10 

 

 

 
Fig. 5 - Velocities  ß��
��, ß�à
��		/�/ã3  (in y- and z-direction, see fig.1) at the rotor blade tip - node #10 
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Fig. 6 - Torsional rotation resp. velocity  ï�
��, ï��
��		at the rotor blade tip (node #10) 

Comparison to the vibrations computed by direct step-by-step integration of the equations 

(2.1) shows no significant deviancies except for the torsional rotation. This is probably due to 

the absence of torsional eigenmode in the employed four eigenmodes. 

 

4.4 Proportionally damped system 

By using the symmetric damping matrix �d - Eq. (4.4), the resulting ten lowest complex 

conjugate eigenvalue pairs are: 

 

 

 

 

  (4.14) 

 

 

 

 

The natural frequencies and the modal damping ratios associated to the four employed 

eigenmodes are in this case: /ðs3 = /�g3 =           (4.15a-b) 

The (108x8) real transformation matrix ñÊ, computed in regard with Eq. (3.26a), has now the 

form (only the first ten rows are printed):  

 

 

      

(4.16)  ¡° =                         
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The time-dependent “load” vector in the general modal transformed equations (3.27) is now 

calculated to:  

 

vww
wxY�
��ℎ�
��⋯Yæ
��ℎæ
��{|

||}
°
= ¡°�� ∙ uV $ d % =	                  (4.17) 

   

 

 

After step-by-step integration of the four modal equations, the time series of the modal 

coordinates ( ) ( )tytx jj , , ( )4...,1=j , are obtained - Figures 7 - 8:  

 

Fig. 7 - Time response of the modal coordinates MT
ò�, T
ò�	for the case “proportional damping” 

 

 

Fig. 8 - Time response of the modal coordinates MW
ò�, NW
ò�	for the case “proportional damping” 
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The total responses �
��, �� 
�� - see Figs. 9-11, are computed by a back transformation 

according to Eq. (3.30). 

 

Fig. 9 - Total vibration resp. velocity ß�
��, ß��
��		 (in y- direction) at the rotor blade tip - node #10 

 

 

Fig. 10 - Total vibration resp. velocity ßà
��, ß�à
��		 (in z- direction) at the rotor blade tip - node #10 

 

Fig. 11 - Torsional rotation resp. velocity  ï�
��, ï��
��	 at the rotor blade tip - node #10 
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Fig. 12 - Total torsion ( ) [ ]radt1ϕ  at node #10, calculated by direct step-by-step integration  

(“proportional damping”) 

The time series for the DOF calculated by direct step-by-step integration of the equations of 

motion (2.1) are practically identical to the vibrations in Figures 9-11. The only difference 

occurs in the torsional vibration, compare Figures 11 and 12. The deviations may be 

explained by the absence of a torsional eigenmode in the four employed eigenmodes in the 

modal matrix. 

 

5  RESULTS AND CONCLUSIONS  

In the first variant (Sec. 2) of the proposed procedure the real transformation matrix is 

assembled employing the right complex conjugate eigenvector pairs, normalized on the 

SDOFS level and on MDOFS level with respect to the corresponding mass matrix. There are 

shown and discussed in details advantages and differences in comparison with a similar 

method (Fai F. Ma, 2010), (Fai F. Ma, 2011) called “phase synchronization”, which is based 

on the “Lancaster” space state form of the equations of motion. The proposed procedure is 

derived in a quite natural way, but it doesn’t base on the notion of “phase synchronization”. 

The second presented variant (Sec. 3) operates with both the right and the left complex 

eigenvector pairs. In this version the eigenvectors for the MDOFS are normalized by using 

the orthogonality relationships between the right and left complex eigenvectors.  

In both proposed procedures the real-space modal transformation matrix ¡ is developed by 

combining of two complex transformations, resulting from the eigenvalue problem of the 

SDOFS and the MDOFS. Analytical expressions for the real-space transformation matrix and 

for the real-space “right side” vector of the uncoupled modal equations are derived. 

Both presented variants of the modal procedure retain the common advantages of the classic 

modal decomposition of the equations of motion. An uncomplete modal transformation may 

be performed by use of a few (k << n) eigenmodes to transform the state space equations into 

k uncoupled SDOFS block equations in real space. Employing only the k lowest eigenvector 

pairs in the ¡ -basis is leading with sufficient numerical accuracy to the total time response of 

all original n DOF - as shown in the numerical example in Sec. 4. 

A structural-mechanical example with 54 DOF - vibration of a wind turbine rotor blade 

subjected to wind thrust loads - demonstrates the performance of the second presented modal 

procedure (Sec.3) for two cases - non-proportional and proportional (Rayleigh) damping. 
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