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ABSTRACT 

In this work, we implement discrete element method for simulation of fault zone formation 
due to the tectonic deformations of the Earth crust. Discrete element simulation provides us 
with the valuable information on the deformations distribution in the vicinity of the fault, 
which can be recomputed into the petrophysical parameters of the core. The final model is the 
spatial distribution of the densities and seismic waves velocities which are used for seismic 
modelling.   
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INTRODUCTION 

Simulation of finite deformations in solids and, in particular, in the geomaterials, 
geostructures, core samples and Earth crust can be done by either grid-based methods such as 
finite differences [Erickson et al., 2001], [González et al., 2008], finite elements [Guiton et 

al., 2003], boundary elements [Resor, Pollard, 2012] or by meshless approaches also known 
as discrete elements method (DEM) [Gray et al., 2014], [Lisjak, Grasselli, 2014]. The letter is 
preferred because no predefined crack or fault geometry is needed for simulation. However, 
particle-based methods are more computationally intense and require calibration of the 
particle properties to match the mechanics of the whole body [Lisjak, Grasselli, 2014], 
[Alassi, Holt, 2012]. In spite of this the particle-based methods are extremely flexible and can 
be used to generate multiple statistical realizations of the fault zones and study statistical 
features of the strongly deformed and highly-distorted zones. This opens a possibility to 
analyze the correlations between the peculiarities in the fault structure and their responses to 
the seismic waves. Moreover, use of the graphical processor units (GPU) significantly reduces 
the computational time making the DEM simulations an efficient and flexible tool.  

In this paper, we present the approach to simulate fault formation in inhomogeneous media 
based on the discrete element modelling implemented on the GPU. In the first section, we 
provide an overview of the approach, describe the particles contact model, and remind the 
time integration finite-difference scheme. Next, we describe the numerical experiments to 
simulate large deformations and fault formation in homogeneous and horizontally layered 
media. After that, we will use the finite deformations to estimate the elastic properties of the 
fault zone to construct the set of models for further seismic modelling [Vishnevsky et al., 
2017], [Kolyukhin et al., 2017; Kostin et al., 2015].  
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DISCRETE ELEMENTS FOR SOLIDS 

In this section, we formulate the basic principles of the discrete elements used for the 
simulation of the finite deformations in geological formations. At the scale of the tectonic 
deformations, we can restrict the considerations with the linear model of particle interactions. 
Moreover, we neglect the rotation of the elements, and consider only the static and dynamic 
friction due to sliding [Botter et al., 2014], [Hardy, Finch, 2005], [Hardy, Finch, 2007], 
[Hardy et al., 2009].  

Consider two particles numbered i and j (Figure 1). Denote coordinates of their centers by ix
ρ

 

and jx
ρ

 respectively and their radii iR and jR . Vector ji

ji xxX
ρρρ

−= is directed from the 

center of j-th element to the center of i-th element, and vector jijiji XXn
ρρρ

/=  is the unit 

vector directed correspondingly. In these notations, elastic interaction between the two 
particles (the normal force) can be defined as (Figure 1a): 
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Constants  and   are the elastic modulae, defining the intensity of the repulsion and attraction. 
In general these two modulae and be completely different [Lisjak, Grasselli, 2014], [Luding, 
2008], however, for the geomaterials they typically coincide [Hardy et al., 2009]. Note, that   
is a limiting distance between two particles, so that if the distance between the particles 
exceeds the limit, the bond breakage accuses. This allows simulation of the cracks and faults 
formation.  

According to the numerical study conducted by several independent researches [Abe et al., 
2011], [Cundall, Strack, 1979], [Duan et al., 2017], [Gray et al., 2014], [Hardy et al., 2009], 
[O'Sullivan et al., 2003] macroscopic properties of the materials are mainly depend on the 
model of friction at the microscopic level, rather than elastic interaction. A classical model of 
friction is based on the Coulomb law, where two types of friction are considered. The first one 
is the friction of rest, which is defined by the relative displacement of the particles and is 
independent on their velocity. However, if the friction of the rest exceeds a particular value, 
the relative motion starts dominating, and the friction is defined by the relative velocities of 
the particles. Formally, the tangential forces due to the friction can be represented as 
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where jit
ρ

is the unitary tangential vector, i.e. 0),( =jiji nt
ρρ

. Vector 
dt

xd

dt

xd
vvv

ji
jiji

ρρ
ρρρ

−=−=

is the relative velocity vector. Parameter tK is a shear modulus, which is typically close to the 

elastic modulus +
rK , tδ is the relative displacement for the rest position, and sd µµ < are the 

dynamic and static friction coefficients. A sketch of the tangential forces appeared between 
two interacting particles are presented in Figure 1b.  
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In order to make the system stable at large enough time of simulation an artificial dissipation 
is used 

dt

xd
F

i
d

i

ρρ
ν−=  (3), 

where  is the dissipation parameter. The particular choice of this parameter is discussed in 
[Luding, 2008]. 

 
INTEGRATION OF THE EQUATIONS OF MOTION 

Having defined all the forces acting at the particles, due to elastic interaction, friction, 
artificial dissipation, and, possibly external forces we can write down the equations of motion, 
following the Newtonian mechanics: 
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In case of pure elastic interaction, the normal forces do not depend on the particle velocity, 
whereas the explicit dependence is governed by the dissipative term. In contrary to the DEM 
simulation of gas and fluid dynamics, where friction and dissipation may be neglected, in the 
considered case presence of the frictional forces reduces the order of approximation of widely 
used Verlet scheme. Note also that, the interaction between the particles is local, thus very 
limited number of neighbors affect the particular particle (let us say i-th particle). This leads 

(a)

 

(b)

 

 

 

Fig. 1 - Sketches of the particles interactions, a - normal 
elastic forces, b - tangential frictional forces. 
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to the stencil-like simulations, strictly reducing the number of floating-point operations. In 
particular one may estimate the maximal number of the neighbors:  
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where MR and mR  are the maximal and minimal radii of the particles in the system, and 0r is 

the bond length. Typically 0 0.05 mr R≤ , thus it can be neglected. For our further simulations 

we will use the radii distribution so that Mm RR 5.0≈ , thus the maximal number of the 

neighbors will be 11))(dim( ≤iJ . In case of small deformations one may assume that the 

bonds are fixed and never brake up, thus the neighbors are also fixed and the discrete element 
method is equivalent to the finite differences or finite volumes. [Hu et al., 2017], [Wang et 

al., 2017].  

Following [Hardy, Finch, 2005], [Hardy, Finch, 2007], [Mora, Place, 1994] we use the Verlet 
scheme: 
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where njx )(
ρ

 is the coordinate of the j-th particle at instant τnt = , τ is the time step, njv )(
ρ

is 

the velocity of the j-th particle at instant τnt = , and njF )(
ρ

is the force acting at the j-th 

particle at the same instant. If the forces are smooth enough functions of their arguments and 
there is no dissipation, when scheme (5) approximates equations of motion (4) with the 
second order. However, if friction and dissipation is included into the system, when the order 
of approximation decreases down to the first.  

 

NUMERICAL EXPERIMENTS 

The first series of the numerical experiments was done to simulate fault forming in a 
homogeneous media. We consider different values of the internal dynamic friction coefficient 
and study its effect on the fault formation. To make the simulations consistent with previously 
published results we consider the particle’s properties the same as in the paper [Botter et al., 
2014]; i.e. Bulk modulus of particles GPaK r 8.7= , bond length 0 0.05 mr R= , dissipation 

coefficient 100=ν  kg/s, shear modulus rs KK = , static friction coefficient 8.0=sµ , 

dynamic friction coefficient dµ varies. The size of the domain is 2000 by 500 m. Diameters of 

the elements varied from 1.25 to 2.5 m using uniform distribution. We simulate 60° dipping 
normal fault, with vertical displacement equal to 100 m. We provide several stages of the 

fault formation for dynamic friction coefficient 0.3dµ = (figure 2) and 0.1dµ = (figure 3). 

We present the relative deformations in the fault zone and also introduce coloring of artificial 
layers (original model is homogeneous) to illustrate the displacements. According to the 
presented results, formation of the fault takes place along particular inclined planes. The 
smaller the dynamic friction the flatter the fault is.  
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Fig. 2 - Relative volumetric strains for the model with 0.3dµ = , for vertical displacements 15, 

30, 45, 60, 75, and 90 meters. 
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Fig. 3 - Relative volumetric strains for the model with 0.1dµ = , for vertical displacements 15, 

30, 45, 60, 75, and 90 meters. 

 

The second set of experiments is done for a layered media, where shale layers are alternating 
by the layers of sandstone. Following [Botter et al., 2014] we consider the physical properties 
of the particles representing shale and sandstone coinciding and being equal to those used in 
the previous experiment. The different is modeled by using dynamic friction coefficients 
equal to 0.3 for sandstone and 0.1 for shale. Having computed the finite deformations for the 
layered model we use the empirical relations between the strains and elastic modules of the 
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rocks to estimate seismic velocities in the vicinity of the faults [Holt et al., 2008], [Skurtveit 
et al., 2013], [Hatchell, Bourne, 2005]. In particular, we consider quadratic relations for the 
longitudinal wave speed:  
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where 0V is the reference velocity in unperturbed model, ε is the relative volumetric strain. 

The shear wave velocity is estimated as / 3s pV V= . Results (estimated velocities) for 

several statistical realizations are presented in figure 4, where the formed fault zone presents 
causing local decrease of the wave propagation velocities.   

 

 
 

Fig. 4 - Examples of the P-wave velocity estimation in the fault zone by discrete 
element modelling. 

 

CONCLUSIONS 

We presented an approach for numerical simulation of the fault formation process, based on 
the discrete element method. This approach allows reconstructing the fault zone which is the 
result of finite deformations in the rock formaition. In contrary to the grid-based methods, 
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discrete elements do not require predetermined fault position. Moreover, size of the particles 
can be changed and typically statistically distributed. This makes the DEM simulations 
attractive from the geostatistical point of view, because allows simulating multiple statistical 
realizations of the fault zones.  

We estimate the seismic parameters in the fault zone on the base of the empirical relations, 
however, we admit that to be more accurate and close to the reality we need to use DEM at 
the core scale to simulate fraturing or formation of the deformation bonds in the core samples.  
After that we can follow the evolution of the elastic properties of the core under increaseing 
finite deformations.  
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