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ABSTRACT 

The present study emphasises the importance of the blood elastic property in the 

hemodynamics of patient-specific left coronary arteries. An In-House OpenFOAM® code 

was developed to take into account the blood flow as real as possible. At systolic peak, 

highest inlet velocity, differences in the velocity profiles are observed, considering Multi-

mode PTT model (shear-thinning and blood elastic effects) or Carreau model (only shear-

thinning effect). In arteries with small diameter, as coronary arteries, the elastic blood 

behavior has an important role on the blood flow pattern. 

Keywords: blood elastic property, hemodynamics, coronary artery, Multi-mode PTT model, 

OpenFOAM®. 

 

INTRODUCTION 

Cardiovascular diseases are, nowadays, one of the main causes of death, in humans, in 

developed countries (Mozaffarian et al., 2015). The clinical practice shows that specific sites 

in human circulatory system are sensitive to atherosclerosis development. The artery narrows 

due to the accumulation of lipoproteins inside the artery and near the wall. The medical scans, 

provided by the hospitals, give information about the geometry and the location of 

atherosclerosis disease. However, the images do not explain the hemodynamics which 

numerical simulations can describe in detail. Numerical studies have gained importance as an 

auxiliary tool for the prevention and treatment of such diseases. In the literature (Alastruey et 

al., 2011, van der Giessen et al., 2011, Chaichana et al., 2013), numerical studies of left 

coronary arteries (LCA) do not consider, simultaneously, all the blood properties: elastic 

property of blood, shear-thinning blood behavior, pulsatile flow, fluid-structure interaction. 

The present work presents an In-House developed software which simulates, as real as 

possible, the blood flow. A constitutive equation model, Phan-Thien-Tanner (PTT) Model, 

taking into account the blood elastic behavior, was implemented in OpenFOAM® code and 

validated. The goal of the paper is to conclude about the importance of considering the blood 

elastic property in the hemodynamics of patient-specific left coronary arteries. 

 

NUMERICAL MODEL 

A patient-specific LCA geometry is represented in Figure 1: a healthy artery with diameter 

equal to 3.6 mm at the inlet. The 3D geometry was created in MIMICS® software and, then, 

imported to ANSYS® to generate a refined tetrahedral mesh. The mesh was then supplied to 

OpenFOAM® for numerical simulations.  
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Fig. 1 - 3D representation of a patient-specific left conorary artery (LCA).Left Main Steam (LMS), 

Left Anterior Descending Artery (LAD)  and Left Circumflex Artery (LCx) of the LCA. 

 

In the open source code OpenFOAM®, the constitutive equation, describing the blood 

rheology, was implemented, and à posteriori solved, simultaneously, with the conservative 

equations. 

 

The mass and momentum conservative equations are: 
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U is the velocity vector, ρ the mean density and Sτ  the stress tensor of the solvent part defined 

by: 

 

Dτ S S2η=            (3) 

 

where Sη is the solvent viscosity and D  the deformation rate tensor: 
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The stress tensor of the polymeric part, Pτ , is well-defined by a constitutive equation. Several 

constitutive equations, demonstrating the elastic behavior of a fluid, are cited in the literature 

(Favero, 2009): Oldroyd-B, Giesekus, FENE (Finite Extensible Nonlinear Elastic), PTT 

(Phan-Thien-Tanner) linear, exponential or multi-mode, DCPP (Double Convected Pom-

Pom), etc. The one chosen and implemented in the OpenFOAM® code was the Multi-mode 

PTT model. The respective parameters for blood at 37 ºC are well defined by Campo-Deaño 

et al. (2013). 
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Pulsatile blood flow was considered and is represented in Figure 2 for three cardiac cycles. 

The systolic peak (maximum velocity in the cardiac cycle) can be observed.  

As Dong et al. (2015), the time-dependent velocity and pressure profiles of physiological 

pulsatile flow and pressure waveforms were assembled using Fourier series in Matlab® 

software (MathWorks Inc, Moler, Massachusetts, USA).  

A time-dependent and radius-dependent inlet velocity profile was imposed in order to be 

instantaneously fully developed. A time-dependent and constant-radius pressure wave was 

imposed at the outlet branches.  

 

Fig. 2 - Mean inlet velocity profile, 
m
inU , and outlet pressure profile, p, throughout three cardiac cycles. 

 

RESULTS AND CONCLUSIONS 

Velocity fields at systole peak, maximum velocity of the cardiac cycle, considering elastic 

behavior of blood (Multi-mode PTT Model) and without elastic behavior (Carreau Model) 

are represented in Figure 3 (middle plane representation of the 3D coronary artery).  

 

Fig. 3 - Velocity field U (m/s) at systolic peak considering a) Carreau Model (only shear-thinning 

blood behavior; b) Multi-mode PTT Model (shear thinning and elastic blood behavior).   
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Fig. 4 - Velocity profiles U (m/s) and Shear Stress (γ) along Y Coordinate (m) near the LMS inlet and in the 

bifurcation region. 

 

 

Fig 5 - Apparent viscosity (η) vs. Shear Rate (γ) using Carreau model for blood rheology (Yilmaz and 

Gundoglu et al., 2008), Multi-mode PPT model (Campo-Deaño et al., 2013) and blood experimental data 

(Valant et al., 2016). 
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Near the LMS inlet (Line 1 of Figure 3), the velocity profiles, taking into account the Multi-

mode PTT model or Carreau model, are similar. The inlet pulsatile flow is the same for both 

cases and the effect of blood elastic behavior is not developed at this location. The shear 

stress values are in the range [17-597] s
-1

 (Figure 4a). In this range, both Carreau and Multi-

mode PTT models fit well blood experimental data (Figure5).  

In the bifurcation region (Line 2 of Figure 3), different profiles are observed concerning 

Multi-mode PTT or Carreau model. The differences are due to the elastic behavior of blood 

in small arteries where shear rate presents low values. Shear rate values are in the range of 

[1.9-13] s
-1

(Figure 4b). For this range, Multi-mode PTT model fits quite well blood 

experimental data while deviations are observed for Carreau Model (Figure 5). 
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