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ABSTRACT 

The more realistic analysis of structure failures under uncertainties is associated with the use 

of probabilistic methods. One of the main problems in the structural reliability analysis of 

composite laminate structures is the possible existence of multiple MPP (Most Probable 

Failure Point). In this work, we propose a numerical inverse technique for the global MPP 

search as a function of the anisotropy of the laminated composites. A Bayesian method to 

estimate the probability of failure based on Monte Carlo simulation performs the results 

validation. The validation process demonstrates that the proposed methodology is adequate to 

estimate the probability of failure of the laminated composite structures. 

Keywords: uncertainty, reliability, composite structures, inverse optimization, Bayesian 

estimation 

 

INTRODUCTION 

The more realistic analysis of structure failures under uncertainties is associated with the use 

of probabilistic methods. The probabilistic analysis of structural integrity, or structural 

reliability, considers the uncertainties in the variables and in the design parameters of 

structures. Furthermore it is studied also the impact of these uncertainties on the 

characterization of the failure of these physical systems. Approximate reliability methods, 

such as first-order methods (FORM) or second order (SORM), aim to obtain the so-called 

Most Probable Failure Point (MPP). MPP research is equivalent to solving a problem of 

optimization that until recently has been performed using gradient-based techniques. When 

the search methods are gradient based there is the possibility of existence of multiple failure 

points, that is, multiple local optima. In this case, one needs to use simulation techniques, 

such as the Monte Carlo Method. 

 

FUNDAMENTAL PROBLEM OF STRUCTURAL RELIABILITY 

The fundamental problem of structural reliability consists in solving the following integral: 

�¸ = q���¶� ≤ 0� = ¹ £¶���	
º���»E �8																																															�1� 

where ¶ = �_1, _7, ⋯ , _��� is a random vector defined in the probability space,  �½, ℱ, q�	where Ω	is the sample space, and can be identified as the set of all the structural 

design scenarios, ℱ is the σ-algebra of the subsets of Ω and P is the probability measure. The 

vector X represents the random variables that contain information about the uncertainties that 
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affect the safety of the structure under consideration and £¶��� is the joint probability density 

function of X. The basic variables usually describe the randomness in geometry, in material 

properties or applied loads. 

For each realization of X the state of the structure is determined by quantities such as 

displacements, deformations, stress, damage measures, etc. The state of a structure can be of 

failure or safety. The failure state occurs when a realization of X is in the failure domain 

defined by À̧ = ¦� ∈ ℝ�: ���� ≤ 0§. The function �)_,Ψ�¶�+ is denoted by the limit state 

function and depends on the input variables, X, and the response, Ψ(X). For one 

simplification, only uses the X notation referring to all the random variables involved in the 

analysis. The set ¦� ∈ ℝ�: ��Å� = 0§ defines the limit state surface, representing the 

boundary between the two states. 

Two sets are then considered: À̧ = ¦� ∈ ℝ�: ��Å� ≤ 0§ which is called the failure domain; ÀÆ = ¦� ∈ ℝ�: ��Å� > 0§	which is called the safety domain. 

The safety state is the state for which a structure, or part of it, can fulfill functions for which it 

was designed. On the other hand, the limit state is seen as the state beyond which a structure, 

or part of it, is no longer in safety state. 

In the analysis of the reliability of composite structures, the random variables are 

uncorrelated, defining the vector X. In this particular case, the random variables are the 

mechanical properties of the composite laminate structure and the limit state function is, ���� = u4 − 1																																																																		�2� 
where u4 is the most critical Tsai number defined by u4 = >��)u1, ⋯ , u�, ⋯ , u�È+																																																			�3� 
being Ns the total number of points where the stress vector is evaluated. The Tsai number, u4, 
which is a strength/stress ratio, is obtained from the Tsai-Wu interactive quadratic failure 

criterion and calculated at the k-th point of the structure solving equation 1 − ) �̈9É�É9+u�7 − � �̈É��u� = 0			�, < = 1, 2, 6																																			�4� 
where É� are the components of the stress vector, and �̈9 and �̈ are the strength parameters 

associated with unidirectional reinforced laminate defined from the macro-mechanical point 

of view.  

If the distribution of the basic variables, XÌ, and the limit state function, ����	are known, the 

probability of failure can be employed as a measure of reliability. Using the Lind Hasofer 

method, one will get an approximate value for this probability. 

 

LIND HASOFER METHOD 

In 1974, Lind and Hasofer proposed a method (Hasofer and Lind, 1974) that implicitly 

assumes the normality and independence of the input variables associated with the 

randomness or uncertainty of the problem. 

The problem originally defined in the normal space x and transformed into a problem defined 

in standardized normal space Í	of coordinates 31, 37, ⋯ , 3�	through the transformation 
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�� = _� − ��N� 																																																																			�5� 
Let  �1, �7, ⋯ , �� be uncorrelated standardized normal random variables. Consider the limit 

state function projected in this space. Let p = 6��1, �7, ⋯ , ���. 
Let us rewritten the probability of failure in the form, 

�¸ = ¹ Î�Í�Ï�Í�»E �Í																																																												�6� 
where  Î�Í�	is the joint standardized normal density function. This function has a maximum 

at the origin and decays exponentially with ‖	Í	‖7. So, the points that most contribute for the 

previous integral are those of the limit state surface nearest to the origin. 

Thus, the first step consists in determining the point on the limit state surface nearest the 

origin. 

In the simplest case, where the limit state function is linear, this function can be written in the 

form 6�Í� = � − Ð�Í, where �	is the distance from the hyperplane 6�Í� = 0 to the origin 

and Ð is a unitary vector normal to the hyperplane and directed outwards. It is proved that Î�Í� has a maximum at Í∗ = �Ð. Therefore, Í∗	is called the most probable failure point 

(MPP). This point on the limit state surface, nearest the origin, represents the worst 

combination of the random variables (Melchers, 1999). 

The random variable, = �ÑÒ − Ð�Ó, is normally distributed with mean value ]�p� = � and 

variance	��p� = 1 and the probability of failure given by �¸ = q�� − Ô�Ó ≤ 0� = ɸ�−��																																															�7� 
In the case where 6�Í� is not linear, the search of the MPP can be formulated as a constrained 

optimization problem Í∗ = minÏ�Í�SE‖Í‖																																																																�8� 
The above problem solution uses appropriate methods. The classical method of variational 

calculus is to solve the equivalent problem min×�Í, �� = ‖Í‖ + �6�Í�																																																				�9� 
where � is the Lagrange multiplier associated with the limit state equation 6�Í� = 0. 

If the number of basic variables is high or if the limit state function is complicated, one needs 

an iterative scheme to solve this problem. 

After determining the MPP, the corresponding reliability index is defined, |�| = ‖Í∗‖																																																																	�10� 
The second step consists of approximate the surface state limit. 

In FORM, one considers the limit state function linearized in the MPP,		Í∗. Such linearization 

corresponds to approximate the limit state surface 6�Í� = 0 by the normal hyperplane to the 

vector	Í∗. This hyperplane equation is −Ø�Í, where the unit vector Ø is given by  
∇Ï|Í∗Ú∇Ï|Í∗Ú. 

The study is then similar to the case where the limit state function is linear. So, the probability 

of failure is given by the equation: 
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�¸ = ¹ Î�Í�Ï�Í�»E �Í ≈ �¸{ÜÝC = ¹ Î�Í�ÞgØßÍ»E �Í = 	ɸ�−��																				�11� 
The first-order approximation provides good results if the curvatures of the limit state surface 

are not high (Der Kiureghian, 2005). If the limit state surface is strongly nonlinear, uses a 

second-order approximation aiming to improve the results. The second order approximation, 

obtained by developing 6�Í� in a second-order Taylor polynomial around	Í∗, is 

6�Í� ≈ ∇6|Í∗�Í − Í∗� + 12 �Í − Í∗��∇76|Í∗�Í − Í∗�																														�12� 
where ∇76 = à áâÏá;Pá;ãä is the Hessian of the limit state function and 6�Í∗� = 0. 

If input variables are not normal, or are not independent, Rackwitz and Fiessler (Melchers, 

1999) suggest that the problem originally defined in x-space is transformed into a problem 

defined in 3 -space. 

The transformation of x-space to 3 -space depends on the available statistical information if 

the input variables are normal or not and whether they are independent or not. 

 

MONTE CARLO SIMULATION (BAYESIAN FORMULATION) IN RELIABILITY 

To estimate the probability of failure, the previous approximate methods use the so-called 

most probable failure point (MPP). Research from this point is an optimization problem that 

involves techniques based on gradients, evolutionary research or others. When using the 

gradient-based methods, we face the possibility of multiple points, which are multiple local 

optima. This problem is exacerbated, when the number of random variables involved is large, 

or when the degree of non-linearity of the limit state functions associated with the response of 

the structural system is high. In this case, there is no guarantee to access correctly the 

structural reliability. To overcome these difficulties, complementary approaches are proposed, 

such as the Monte Carlo method. These complementary approaches are used essentially to 

provide values for the validation of the results obtained by previous methods. 

According to the Bayesian formulation, in the estimation of a parameterθ , the a posteriori 

distribution ℎå|Å�©|�� is the product of the likelihood of the sample £�|³	��|©� by the a priori 

distribution 6å�©� with an appropriate constant. For the particular case in which the 

parameter to be estimated is the probability of failure, �¸, by the Bayes Theorem, the a 

posteriori distribution of  �¸, ℎ�æ|�,�)�¸çs, ?+ is given by (Guérin et al., 2007). 

ℎ�æ|�,�)�¸çs, ?+ = £�,�|�æ)s, ?ç�¸+6�æ)�¸+è £�,�|�æ)s, ?ç�¸+6�æ)�¸+��¸1E 																																�13� 
where 6�æ)�¸+ is the a priori distribution and must belong to a family such that the a 

posteriori distribution ℎå|��©|�� is from the same family. For the likelihood, we have the 

binomial model £�,�|�æ)s, ?ç�¸+ = é?sê )�¸+�)1 − �¸+�g�, s = 0,1,⋯ ,?																									�14� 
from which the a priori distribution must be a Beta distribution. 

The a posteriori distribution to a binomial likelihood and a priori Beta is 
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ℎ�æ|�,�)�¸çs, ?+ = ë	
1ì�Y + s,? − s + í� )�¸+îï�ï1)1 − �¸+�g�ïzg1,			0 ≤ �¸ ≤ 1
0																																,																�¢ℎ �	�Y¡3 É 			 �15� 

which is a  ì ¢Y�s + Y,? − s + í�	distribution with mean value ])�¸çs, ?+ = �ï��ï�gz and 

variance �)�¸çs, ?+ = ��ï���zï�g����ïzï��â��ïzï�ï1� 
A confidence interval with confidence γ is given by )�¸���, �¸���+ with �¸���such that 

¹ ì ¢Y�s + Y,? − s + í���¸ = ð2�æñPò
E 																																				�16� 

and �¸��� is such that  

¹ ì ¢Y�s + Y,? − s + í���¸ = 1 − ð2�æñ�ó
E 																												�17� 

Let us consider two situations here: 

• ôõö)õö+	is non-informative 

In this case, the appropriate model for 6�æ)�¸+	follows a uniform distribution	�¸~ì ¢Y	�1,1�. 
The a posteriori distribution is a Beta distribution	�s + 1,? − s + 1�. A confidence interval, 

with confidence ð is given by )�¸���, �¸���+	with �¸���	such that 

¹ ì ¢Y�s + 1,? − s + 1���¸ = ð2�æñPò
E 																																					�18� 

and �¸��� is such that  

¹ ì ¢Y�s + 1, ? − s + 1���¸ = 1 − ð2�æñ�ó
E 																												�19�	 

 

• ôõö)õö+		is informative 

If the source of information is the knowledge of a previous Monte Carlo simulation (N' 

simulations and k' failures), the a priori distribution is a Beta distribution	�s′ + 1,?´ − s′ +1�. 
The a posteriori distribution is a Beta distribution �s + s′ + 1,? − s + ?´ − s′ + 1�. 
A confidence interval, with confidence ð is given by )�¸���, �¸���+	with �¸���	such that 

¹ ì ¢Y�s + s′ + 1,? − s + ?´ − s′ + 1���¸ = ð2�æñPò
E 																												�20� 

and �¸��� is such that  

¹ ì ¢Y�s + s′ + 1, ? − s + ?´ − s′ + 1���¸ = 1 − ð2�æñ�ó
E 																			�21� 
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INVERSE RELIABILITY PROBLEM 

An approach based on the design of composite structures to achieve a specified reliability 

level is proposed, and the corresponding maximum load is outlined. The objective function 

describing the performance of the composite structure is defined as the square difference 

between the structural reliability index, �ø, and the prescribed reliability index,	��. The design 

variables are the ply angle, Y, and load factor,	x. The random variables are the elastic and 

strength material properties. 

Thus, the function that describes the performance of the structural system is ¨�x, Y, �� = X�ø�x, Y, �� − ��[7																																											�22�	
where �	is the realization of random variable. The vector of applied loads is defined as: ù = xù�ú¸, where	ù�ú¸ is the reference load vector.  

The minimization of functional defined in equation (22) corresponds to a conventional RBDO 

inverse optimization problem (António and Hoffbauer, 2009). Indeed, for each ply angle, 

there will be an optimal load factor λ
*
 associated with a prescribed structural reliability index ��.  

The prescribed reliability index, ��, is thus the objective to be achieved by the structural 

reliability index. 

 

RESULTS  

Let’s consider an aircraft wing-like composite panel as shown in Figure 1. The panel 

thickness is equal to 0.015 m. The structure is clamped along linear side ��ì� and free along 

opposite side. One vertical load with perpendicular direction relatively to û_a plan is applied 

on point ü. The structure is built by one laminate made of a carbon/epoxy composite system. 

A balanced angle-ply laminate with eight layers and stacking sequence X+Y/−Y/+45ý/−45ý[	Æ is considered in a symmetric construction. Ply angle Y, is referenced to the 8-axis of 

the reference coordinate, as detailed in Figure1. All plies have same thickness. 

 
 

Fig. 1 - Geometric definition of aircraft wing-like composite panel. 
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Ahmad degenerated shell finite element (Ahmad et al., 1979) is used here for structural 

analysis. To assess reliability, the previously described procedure in equation (22) is applied 

considering the vector of random variables	þ = �]1, ]7,, a, c� where ]1~��181.00,10.860��qY		]7~��10.30, 0.618��qYa~��40.00, 2.400�pqYc~��68.00, 4.080�pqY  

The target reliability index is �� = 3	and the coefficient of variation of each random variable 

is set to ü��þ� = 6%. The corresponding maximum load is plotted in Figure 2 and it is used 

as the reference load. 

 

Fig. 2 - Maximum load for	�� = 3, solving the inverse RBDO problem for aircraft 

wing-like composite panel. 

Monte Carlo Simulation method is used to study the Tsai number. Analyzing 10000 

simulations, histograms descriptive measures and of the Tsai number are obtained and 

presented in Figure 3 and Table 1 for all angles. Histograms suggest a normal distribution for 

all angles. 

 
Table 1 - Descriptive measures of the Tsai number (10000 Monte Carlo simulations) 

Ply angle Mean C.V. (%) Minimum Maximum Number of failures 

0º 

15º 

30º 

45º 

60º 

75º 

90º 

1.244 

1.133 

1.159 

1.216 

1.224 

1.222 

1.229 

6.80 

3.87 

4.71 

6.32 

6.29 

6.10 

6.26 

0.953 

0.948 

0.939 

0.910 

0.949 

0.951 

0.966 

1.557 

1.290 

1.361 

1.519 

1.522 

1.491 

1.515 

13 

13 

20 

13 

11 

13 

12 

 

The results presented in Figure 2 can be validated using a Bayesian method to estimate the 

probability of failure based on Monte Carlo simulation, calculating a two sided 95% 

confidence interval of �¸ , associated with the obtained maximum load, for each ply angle, Y. 
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A prior and a posterior distributions used for Bayesian estimation are defined in Table 2 and 

their graphic representations are shown in Figure 4. The source of information is the 

knowledge of a previous Monte Carlo simulation (?′ = 2000 simulations).  

In this case, the maximum load is applied to the composite structure for each value of ply 

angle, Y, and the Monte Carlo simulations used, together with Bayesian inference, to confirm 

the prescribed reliability index of �� = 3. The confidence intervals for �¸ are shown in Figure 

5, where the red points indicates the failure probability	�¸ = ɸ�−3�, calculated using 

equations (20) and (21).  

 
Fig. 3 - Distribution of the Tsai number. 

 

 

Fig. 4 - A prior and a posterior distributions used for Bayesian estimation. 
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Table 2 - Confidence intervals of failure probability 

Ply angle a priori distribution a posteriori distribution CI (95%) 

0º 

15º 

30º 

45º 

60º 

75º 

90º 

Beta(2,2000) 

Beta(3,1999) 

Beta(5,1997) 

Beta(4,1998) 

Beta(2,2000) 

Beta(3,1999) 

Beta(2,2000) 

Beta(15,11987) 

Beta(16,11986) 

Beta(25,11977) 

Beta(17,11985) 

Beta(13,11989) 

Beta(16,11986) 

Beta(14,11988) 

(0.00069972, 0.0019565) 

(0.00076224, 0.0020607) 

(0.00134855, 0.0029741) 

(0.00082540, 0.0021642) 

(0.0005769, 0.00174600) 

(0.00076224, 0.0020607) 

(0.00063792, 0.0018517) 

 

The red points are inside of the confidence interval, showing the agreement of the results 

obtained using the Lind-Hasofer method with those from the Monte Carlo simulation together 

with Bayesian inference. 

 
Fig. 5 - Confidence intervals of failure probability (bayesian inference). 

 

CONCLUSION 

Depending on a certain reliability index imposed on the composite structure, the maximum 

load is obtained, as a function of the anisotropy of the laminated composites. 

The results obtained for the maximum load were validated using the Monte Carlo simulation 

with Bayesian methodology to estimate the probability of failure. The validation process 

shows that the proposed methodology is adequate to estimate the probability of failure of the 

laminated composite structures. 
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