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ABSTRACT 

This paper presents a numerical study concerning the fatigue modelling of welded specimens 
made of S355 steel. The welded specimens were inspired by a welded joint of a connection 
between the diaphragm and a transverse stiffener of the Alcácer do Sal Portuguese railway 
bridge. The Alcácer do Sal Bridge is a composite bowstring railway bridge, located in the 
Portuguese railway line. A fatigue experimental campaign of small scale welded specimens 
was performed using four variations of the welded joint. Numerical models were used to 
compute the stress intensity factor ranges. The stress intensity factors were computed by 
means of the contour integral method, using a 3D eXtended Finite Element Method (X-FEM), 
as well as the Virtual Crack Closure Technique (VCCT) with standard Finite Element Method 
(FEM). In addition, fatigue lives were computed and compared with available experimental 
data. Very accurate predictions of the mean S-N curves were derived.  

Keywords: EXtended Finite Element Method, Finite Element method, Stress Intensity 
Factor, Contour Integral, Virtual Crack Closure Technique, Fatigue, Welded Joints.  

INTRODUCTION 

Solving three-dimensional fracture/fatigue engineering problems by standard finite element 
methods can be quite a challenge, since the need to generate a suitable mesh which conforms 
to both the propagating crack surfaces and the surfaces of the component constitutes a 
cumbersome task. If the crack surface is not aligned with the element boundaries, the 
displacement discontinuity and the traction conditions on the crack surface cannot be treated 
as usual in a standard finite element analysis. Furthermore, for standard finite elements, the 
mesh must be built substantially more refined around the crack than in the remainder of the 
model (Moës & Belytschko, 2002). The difficulty increases when crack growth modelling is 
intended, because in this analysis, the finite element mesh must be remeshed in the vicinity of 
the crack. The eXtended Finite Element Method (X-FEM) (Belytschko & Black, 1999) 
presents several improvements regarding the numerical crack growth modelling, because no 
remeshing procedures are required. The concept of the X-FEM approach uses a displacement 
field approximation, able to model an arbitrary discontinuity and the near-tip asymptotic 
crack fields (Moës & Belytschko, 2002). The methodology was first presented by Belytschko 
(Belytschko & Black, 1999) and Moës (Moës et al., 1999). Finite element, with additional 
enriched functions, coupled to the partition of unity concept, introduced by Babuška and 

Melenk (1997), are used. The resulting approximation can be used to treat cracks that are 
arbitrarily aligned in the finite element mesh with great accuracy. 
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This paper presents a numerical study, the main goal is to model welded joints made of S355 
steel using both ANSYS and ABAQUS codes. The modelled welded joints were inspired 
from a welded joint of an actual connection between a diaphragm and a transverse stiffener of 
the Portuguese Alcácer do Sal railway bridge. An experimental campaign of fatigue tests of 
small-scale welded specimens is performed. Several geometric parameters were investigated, 
namely the welded configuration and the plate thickness, where fatigue cracks are expected to 
propagate. Numerical models were used to assess the stress intensity factor range. Contour 
integral method using a 3D X-FEM (ABAQUS approach), as well as the virtual crack closure 
technique (VCCT), as described by Krueger (Krueger, 2004), with standard FEM (ANSYS 
approach) was considered. The fatigue crack growth was modelled using Linear Elastic 
Fracture Mechanics (LEFM) and the Paris Law. Crack initiation was also accounted by means 
of a local notch approach. Fatigue lives were compared to available experimental data. 

 

ALCÁCER DO SAL BRIDGE AND WELDED DETAILS 

The Alcácer do Sal Bridge (Fig. 1) is a composite bowstring railway bridge, located in the 
Portuguese railway line that links Lisbon to Algarve. Its construction occurred from 2007 to 
2010. The bridge has 3 spans of 160 m, a total length of 480 m and is part of a longer 
structure composed by the North access viaduct (with a length of 1115 m), the Bridge and the 
South access viaduct (with a length of 1140 m). The bridge’s deck is suspended axially by 18 

vertical hangers per arch, with the hangers being placed 8 m apart from each other. 

 

 

Fig.1 Alcácer do Sal Bridge. 
 

The cross section of the deck is a composite box-girder, with 15.85 m width and about 3 m 
height. The steel box has a total height of 2.6 m and the concrete slab has a total thickness of 
0.40 m to 0.20 m. A diaphragm is present at each deck to hanger connection section, with the 
corresponding 18 diaphragms per span. Transversal stiffeners are placed at the bottom flange, 
half-way between diaphragms.  

Figure 2 and 3 show the welded specimens, which were modelled using finite elements. A 
total of four welded joints were modelled: one welded specimen with the same weld 
configuration of the bridge detail and a thickness of 5 mm (W1 series) (Fig. 3a)); one welded 
specimen with a weld configuration according to EC3 and a thickness of 5 mm (W2 series) 
(Fig. 3b)); one welded specimen with the same weld configuration of the bridge detail and a 
thickness of 12 mm (W3 series) (Fig. 3c)) and one welded specimen with a weld 
configuration according to EC3 and a thickness of 12 mm (W4 series) (Fig. 3d)).  
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Figure 2. Welded joint details: a) fillet weld according bridge detail; b) fillet weld according EC3. 

 

 
 

 

 

Figure 3. Welded specimens geometry: a) welded specimens with the same weld configuration of the bridge 
detail and a thickness of 5 mm (W1 series); b) welded specimens with a weld configuration according to EC3 
and a thickness of 5 mm (W2 series); c) welded specimens with the same weld configuration of the bridge detail 
and a thickness of 12 mm (W3 series); d) welded specimens with a weld configuration according to EC3 and a 
thickness of 12 mm (W4 series). 

 

FATIGUE MODELLING 

In order to assess numerical S-N curves of welded joints, finite element models of welded 
specimens were created. Figures 4 and 5 show a numerical analysis of the welded joints 
performed using two procedures: standard FEM (Fig. 4) and XFEM (Fig. 5). Fatigue life 
predictions were assessed including both fatigue crack initiation and fatigue crack 
propagation phases. The number of cycles to initiate a fatigue crack was computed using local 
notch strain approaches. The required elastoplastic strains were computed using the Neuber 
(Neuber, 1961) and Ramberg-Osgood (Ramberg and Osgood, 1943) relations: 
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where kt is the elastic stress concentration factor, K´ and n´ are, respectively, the cyclic strain 
hardening coefficient and exponent. nom is the nominal stress range computed at the net 
area near the hot spot. The stress concentration factor was computed using the finite element 
model of the investigated welded joints. The number of cycles for crack initiation was 
computed thru the Morrow relationship (Morrow, 1965): 
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where loc  is the local elastoplastic strain range; ,
f  and b are, respectively, the cyclic 

fatigue strength coefficient and exponent; ,
f  and c are, respectively, the fatigue ductility 

coefficient and exponent; E is the Young modulus. Table 1 presents all fatigue parameters 
data used in this paper for S355 structural steel (De Jesus et al., 2012). 

The number of cycles corresponding to the crack propagation was computed using both 
standard FEM and X-FEM methods. The crack propagation simulation using standard FEM 
can be cumbersome. The propagating crack surfaces and the surfaces of the component need a 
suitable mesh to be able to compute stress intensity factors, which can be problematic to be 
done in 3D problems. XFEM approach allows the definition of the crack, independently of the 
finite element mesh. 

 
Table 1. S355 material data 

K´ 

MPa 
n´ 

f´ 

MPa 
b f´ c 

598.85 0.0757 952.2 -0.089 0.7371 -0.664 

 

   
 

Figure 4. FE models of Welded series obtained using and stress distributions ANSYS: a) W1 series; b) W2 
series; c) W3 series; W4 series. 

 

 

 

a) b) d) c) 
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Figure 5. W1 welded specimen modelled using 3D X-FEM: a) global view of the welded specimen finite 
element mesh; b) detail of the enriched finite elements; c) yy stress field maps; d) phi level set function; e) psi 
level set function. 

 

Concerning the standard FE models, performed in ANSYS, only 1⁄4 of specimens geometries 
were modelled, taking into account existing symmetries. Figure 4 presents the finite element 
mesh modelled for all four welded specimens. Materials were considered linear elastic and 
isotropic (E=210 GPa; =0.27). Hexahedral 20 node finite elements were used. The crack 
path was defined during the finite element mesh generation. Both the initial crack length and 
the crack increments were define as 0.5mm. Stress intensity factor ranges were compute using 
the Virtual Crack Closure Technique, as proposed by Krugger (2004). The loading conditions 
results in dominant pure mode I, which means that only stress intensity for mode I were 
computed at the crack tip. Figure 4 shows the finite element mesh used to model W1 welded 
specimens (Figure 4 a)), W2 welded specimens (Figure 4 b)), W3 welded specimens (Figure 4 
c)) and W4 welded specimens (Figure 4 d)). Figure 4 also exhibits y (y=loading direction) 
stress fields.   

The X-FEM is a methodology that was incorporated in the finite elements software 
ABAQUS, which allows the fatigue crack modelling independently of the finite element 
mesh, enriching all elements cut by the crack, using enrichment functions satisfying the 
discontinuous behaviour and additional nodal degrees of freedom. The approximation to a 
displacement field function with the partition of unity enrichment is: 
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where NI(x) are the usual nodal shape functions; the first term on the right-hand side of the 
above equation, {uI}, is the usual nodal displacement vector associated with the continuous 
part of the finite element solution; the second term is the product of the nodal enriched degree 
of freedom vector, {aI}, and the associated discontinuous jump function H(x) across the crack 
surfaces; and the third term is the product of the nodal enriched degree of freedom vector, 
{bI}, and the associated elastic asymptotic crack-tip functions, F(x). The first term on the 
right-hand side is applicable to all the nodes in the model; the second term is valid for nodes 
whose shape function support is cut by the crack; and the third term is used only for nodes 
whose shape function support is cut by the crack tip. 

A key development that facilitates treatment of cracks in an extended finite element analysis 
is the description of crack geometry, because the mesh is not required to conform to the crack 
geometry. The level set method, which is a powerful numerical technique for analyzing and 
computing interface motion, fits naturally with the extended finite element method and makes 
it possible to model arbitrary crack growth without remeshing. The crack geometry is defined 
by two almost-orthogonal signed distance functions. The levels set function , describes the 
crack surface, while the second level set function, , is used to construct an orthogonal 
surface so that the intersection of the two surfaces gives the crack front. Finite element 
models were modelled using ABAQUS code. As referred for FEM analysis, only 1⁄4 of 
specimens geometries were modelled. Linear hexahedral 8 nodes finite elements were used. 
Finite elements formulation with reduce integration method was considered. 

Figure 5 presents the finite element model of the W1 welded specimen. Finite element mesh 
used may be observed in Figures 5 a) and b). Figure 5b) shows the mesh region where finite 
elements were enriched with additional degrees of freedom. Figure 5c) plots the y stress field 
at the fatigue crack domain. Figures 5 d) and f) exhibit the and  level set functions plotted 
by ABAQUS. Stress intensity factors were computed using the contour integral method 
available in ABAQUS. In order to evaluate accurately stress intensity factor, several contours 
were used, as illustrated in Figure 6. As first approach, five contours around the crack tip 
element were used to compute the stress intensity factors. The second approach to assess the 
stress intensity factors did not consider contour 1, and the third approach only used contours 
3, 4 and 5 to compute stress intensity factors. In order to compute accurate stress intensity 
factors, the initial crack was considered long enough to assure that the contour box was 
distant from the plate edge. Although dominant mode I, for the proposed crack growth 
analysis, both K1 and K2 were computed. Therefore, a crack branching procedure was 
considered (Erdogan and Sih, 1963). The new crack increment angle was computed using the 
maximum hoop stress criteria: 
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An equivalent stress intensity stress is computed using the following relation: 
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Finally, the number of cycles corresponding to the crack propagation is computed using the 
Paris’ law (Paris and Erdogan, 1963). 

 

RESULTS AND DISCUSSION 

Stress intensity factors (SIF) range computed using FEM with VCCT and X-FEM with 
Contour Integral, for W1, W2, W3 and W4 welded specimens, are plotted, respectively, in 
Figures 7a), b), c) and d). Figure 7a) presents the stress intensity factors computed for W1 
welded specimens loaded to 50kN. Figure 7b) exhibits the stress intensity factors computed 
for a crack propagating in W2 welded specimens, loaded at 25kN. Figure 7c) shows the stress 
intensity factors resulting from a crack propagating at the W3 welded specimens, loaded by 
50kN load, and the Figure 7d) illustrates the stress intensity factor history computed for a 
crack growing for W4 welded specimens, loaded by a 75kN load. The red curve corresponds 
to a numerical SIF results assessed using the ANSYS code combined to the VCCT algorithm, 
and the other curves were assessed by means of the X-FEM method and the contour integral 
method, computed using several number of contours. The maximum crack was defined by the 
maximum stress intensity factor observed in a da/dN compact tension tests, tested for the 
same stress ratio (De Jesus et al., 2012). The analysis of Figure 7 reveals that the FEM 
procedure results in higher stress intensity factors, than the X-FEM procedure. Consequently, 
Figure 7 illustrates that SIF values resulting from FEM analysis, reaches the values for lower 
crack sizes than resulted from X-FEM analysis. It is important to refer that the finite element 
mesh used in FEM analysis was coarser than X-FEM models, which may imply higher stress 
intensity values, and then higher crack propagation rates. Stress intensity factors computed 
using distinct contours are also plot in Figure 7. The curve resulting from the analysis using 
all contours around the crack tip element presents some fluctuations. However, once excluded 
contour 1, the stress intensity results are smooth and convergent. 

 

Initial crack

Contour 5

Contour 4

Contour 3

Contour 2

Contour 1

Crack tip FE  
Figure 6. Contours used in the computation of the stress intensity factors with the XFEM approach.  
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Figure 7. Stress intensity factors range computed using FEM and X-FEM: a) W1 welded specimens loaded at 
50kN; b) W2 welded specimens loaded at 25kN; c) W3 welded specimens loaded at 50kN; d) W4 welded 
specimens loaded at 75kN. 
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Figure 8. Comparison between experimental S-N data and numerical S-N curves computed using FEM and X-
FEM analysis: a) W1 series; b) W2 series; c) W3 series; d) W4 series. 
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Figure 8 compares the experimental S-N data with numerical S-N curves resulting from crack 
initiation and propagation modelling, supported by FEM and X-FEM analysis. The analysis of 
the Figure 8 reveals a very good agreement between the numerical S-N curves and the 
experimental fatigue data for all welded specimens.  

 

CONCLUSIONS 

Numerical S-N curves for four types of welded specimens were computed, taking into 
account the number of cycles to initiate and propagate fatigue cracks. The number of cycles to 
initiate a fatigue crack was assessed using a local strain approach. The number of cycles to 
propagate the crack was computed using the Paris law. The required stress intensity factors 
were computed based on two alternative techniques. A standard finite element method was 
considered with the VCCT technique. However, this approach can be complex to apply in 3D 
problems with complex geometries, once the crack path must be defined according to the 
finite element mesh. An alternative method to compute the stress intensity factors, using the 
eXtended finite element method, was adopted. This method allows the fatigue crack 
modeling, independently of the finite element mesh. Both methods were applied to compute 
the stress intensity evolution, and some differences were verified in the stress intensity values, 
required further investigation in order to assess the causes of such discrepancies. The 
predicted fatigue S-N curves were very consistent with available experimental data, which 
validates both proposed fatigue model as well as the techniques for stress intensity factors 
computation.   
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