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ABSTRACT 
In this contribution an extended Bernoulli-Euler theory for a laminated beam hosting several 
resistively interconnected piezoelectric patches is presented. Based on this theory it is shown 
how to calculate the optimal reference voltage level and to design the attached resistive 
network, which connects the electrodes of the piezoelectric layers, if one intends to follow a 
certain trajectory of the lateral deformation (shape control) of a tip-loaded beam. If one tries 
to annihilate the harmonic vibrations along the beam axis, we show that the design criterion 
derived in the static case yields that vibrations are attenuated as long as an electrical time 
constant is small compared to the time constant of the harmonic excitation. This parameter 
involves the number of the piezoelectric patches, the piezoelectric capacitance and the 
resistances of the electric circuit. The proposed shape control method is also verified by a 
three-dimensional finite element calculation in ANSYS. 

Keywords: beam modelling with piezoelectric patches, vibration control, electric circuit, 
shape control. 

 

INTRODUCTION 

Piezoelectric transducers are widely used nowadays for active and passive vibration control, 
for structural health monitoring and for energy harvesting. One special topic of feedforward 
control is known under the term shape control. Shape control has been introduced by (Hafka, 
1985), who calculated the optimal temperature distribution in order to minimize the 
distortions from its original shape. Such problems are so-called inverse mechanical problems 
where external forces and moments are computed to obtain a desired displacement field, see 
(Irschik, 2003). Solutions may not exist, but if they exist they might not be unique. One 
example is a clamped-clamped slender beam with a constant distribution of the piezoelectric 
layer. It can be shown that the beam will not vibrate, if an electric voltage is applied over the 
transducer electrodes, see (Hubbard, 1992), (Irschik, 2003) and (Irschik, 1998). This means 
that if a shaped layer is added to the constant layer, the response of the beam is only a 
consequence of the voltage-actuated shaped layer. Another example for shape control is given 
in (Agrawal, 1999), who minimized the integral of the quadratic difference between a desired 
and an achieved static deflection to obtain the optimized piezoceramics actuator locations and 
voltages. The concept of shape control can be also transmitted, of course with some 
limitations, to passive smart beams with attached electric circuits. In (Schoeftner, 2009 and 
2011) two conditions for the piezoelectric transducers and for the electric network are given 
in order to compensate monofrequent harmonic vibrations caused by arbitrary external forces, 
force couples or distributed loads. This contribution deals with slender beams hosting span-
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wise constant piezoelectric transducers, which are also called piezoelectric patches. A further 
possibility to damp structural deformations is the use of one or several arrays of electrically 
interconnected piezoelectric transducers. These configurations when electrical impedances are 
in connection to adjacent transducers are treated in (Vidoli, 2000), (Porfiri, 2004) and 
(dell’Isola, 2011). Patch actuators can be easily glued onto an elastic system and the resistor 
network can be removed, easily changed or tuned in order to optimize the damping 
capabilities. Beam models with interconnected resistive electric circuits may be interpreted as 
the discretization of a piezoelastic beam with resistive electrodes, see (Schoeftner, 2013) and 
(Buchberger, 2013). The results of their extended beam theory are two coupled partial 
differential equations. The first one is an extension of the Bernoulli-Euler beam theory for a 
purely elastic beam by means of a voltage-depended term, and the second one is a diffusion 
equation for the voltage distribution, with the time-derivative of the lateral deflection as the 
source term. The theory is verified by three-dimensional finite element calculations for 
highly, moderately and hardly conductive electrodes. 

This paper is structured as follows: first, an overview of the equations of motions of a smart 
slender beam with attached piezoelectric patches is given, where resistors are linked between 
their electrodes. Second, we present a general formulation how to design the electric circuit 
and the value for the reference voltage source, in order to achieve a certain displacement field 
for the bending vibrations of a beam in the static regime. In the end we demonstrate the 
correctness of our theory by several numerical examples: in the static limit, once the 
displacement is completely annihilated along the beam axis and then a certain displacement 
trajectory is prescribed. Finally it is shown that the design criterion for shape control with 
perfect displacement compensation, which has been derived for static external loads, may be 
also be approximately fulfilled for dynamically loaded beam, as long as a certain non-
dimensional parameter, involving the number and the capacitances of the piezoelectric 
patches, the total resistance of the circuit and the excitation frequency, is small. 

 

MODELING OF PIEZOELECTRIC BEAMS WITH RESISTEVELY 
INTERCONNECTED PIEZOELECTRIC PATCHES 

In this section we give in brief the basic differential equations of motion of a piezoelectric 
beam, when the electrodes of the piezoelectric transducers are connected to a resistive electric 
circuit. For a detailed derivation the reader is referred to (Schoeftner, 2011 and 2011b) and 
(Buchberger, 2013). 

Equations of motion (mechanical relations) 
A cantilever beam equipped with eight piezoelectric patches at the upper and lower surfaces 
of the non-piezoelectric, elastic substrate is depicted in Fig.1. Only slender beams are 
considered, for which the Bernoulli-Euler assumption holds. The electrodes of the 
piezoelectric transducers are assumed to be ideal. The external ones, e.g. the electrodes of 
patch #1 and #2, are linked via the resistor 12R  (or i.e. via the impedance). It is assumed that 
the reference voltage source 0 ( )V t  is prescribed and that one end of the resistor (here R89) is 
connected to ground 9 0VV = . Additionally, all inner electrodes are connected to ground. In 
the following the index k stands for substrate (s), for piezo (p), or for lower and upper (l, u). If 
the location of the patches from the clamped boundary is the same for the upper and lower 
patches, if the material and geometrical properties (length pl  and height 2 1k k kh z z= − ) are 

equal, and if only loads ( )zq x  in the lateral direction act on the beam, but no compressive or 
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tensile forces in the x-direction, the bending equation of motion for the deflection 0w  is 
decoupled from the axial equation of motion, and reads  

 0 M 0, ( ).w xxxx zM w K w q x+ =��   (1) 

The bending stiffness is M M,elast M,piezoK K K= + , where patch n  is located ( a a pn nx x x l< < + ), 

otherwise it only consists of the stiffness of the elastic substrate M M,elastK K= . In a similar 

manner this also holds for the mass per unit length ,elast ,piezow w wM M M= + . These quantities 
are calculated by  
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with the density kρ , effective Young’s modulus 11
kC�  , the transverse piezo-coefficient 31

ke�  and 
the strain-free permittivity 33

kκ� . The thickness coordinate and the width of the beam are 
denoted by 2 1,k kz z  and ( )kb x .  

At anx  and a a pn nx x l= +� , which are the coordinates between a piezoelectric patch is located, 
the four continuity relations (deflection, rotation, bending moment and shear force) read1 

 ( )
( )

0 a 0 a

0, a 0, a

M,elast 0, a M,elast M,piezo 0, a 31 mp p

M,elast 0, a M,elast M,piezo 0, a

( ) ( )

( ) ( )

( ) ( ) 2

( ) ( )

n n

x n x n

xx n xx n n

xxx n xxx n

w x w x

w x w x

K w x K K w x e z b V

K w x K K w x

− +

− +

− +

− +

=

=

− = − + +

− = − +

�   (3) 

and 

 ( )
( )

0 a 0 a

0, a 0, a

M,elast M,piezo 0, a 31 mp p M,elast 0, a

M,elast M,piezo 0, a M,elast 0, a

( ) ( )

( ) ( )

( ) 2 ( )

( ) ( ).

n n

x n x n

xx n n xx n

xxx n xxx n

w x w x

w x w x

K K w x e z b V K w x

K K w x K w x

− +

− +

− +

− +

=

=

− + + = −

− + = −

� �
� �

� ��
� �

  (4) 

 
 

                                                 
1 The limits from below (left) and from above (right) at anx  are distinguished by anx−  and anx+ , respectively.  



4th International Conference on Integrity, Reliability and Failure 

Funchal/Madeira, 23-27 June 2013 4

y

z

x

patches

12R

9 ( ) 0V t =

0 ( )V t
actuation
voltage substrate

23R 34R 45R 56R 67R 78R 89R
0 ( )V t

piezoelectric
force ( )F t

resistances
 

Fig.1 Sketch of a clamped-free beam with piezoelectric patches. The voltage V0(t) and the 
resistors Rij are the same for upper and lower side and cause a voltage distribution of the 

piezoelectric patches 
 

Electrical relations: 

Since the governing equation of motion (1) and its continuity relations (3) and (4) are coupled 
the electrical voltage of patch #n, also the influence of the mechanical deformation on the 
electrical relations has to be considered. It can be shown that the total charge over the external 
electrodes depends on the beam inclination at anx  and a a pn nx x l= +� , and on the electrical 
voltage nV  over the electrodes of each patch 
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Taking into advantage of Kirchhoff’s current rule (KCR), which states that the sum of 
incoming and outcoming current is equal, one finds 
 { }1 1 1,2, ,n n n n ni i Q n N+ −− = =� …   (6) 

In (6), mni  are the electric current from patch #m to patch #n, thus causing a voltage drop over 
the resistor mnR . Applying Kirchhoff’s voltage rule (KVR), one finds the connection between 
the electric current and the patch voltages 
 { }1 1 1 0,1, , 1,n n n n n nV R i V n N N+ + +− = = −…   (7) 

For the numerical example, when a beam with eight piezoelectric patch actuators (n=8) is 
used, we find nine algebraic equations (KVR-(7)) and eight differential equations (KCR-(5) 
and (6)) in order to determine the eight unknown voltage drops 1 2 8, , ,V V V…  and nine 
unknowns for the current flow 01 12 78 89, , , ,i i i i… . This means, that from the electrical relation, 
the patch voltages are calculated, which also serves as an input source for the equation of 
motion and its continuity conditions (1), (3) and (4). The outcome of the mechanical part is 
the displacement field 0 ( )w x , which is needed in the charge equation for the electrical part, to 
ensure a fully-coupled electromechanical beam model within the framework of Bernoulli-
Euler.  
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DISPLACEMENT TRACKING OF A TIP-LOADED CANTILEVER 

In this section we calculate the necessary voltage to be chosen for the reference signal 0V  and 
the proper values for the resistors ijR , in order to achieve a certain lateral deflection in the 
static case, when the beam is subjected to an external load, force or force couple. One special 
goal of this displacement tracking problem is to completely annihilate the bending 
deformation at certain locations along the beam axis. We will show later on by the numerical 
example, that if one tries to eliminate the displacement, the design rules for the reference 
voltage and the resistor values might be also suitable values for a dynamically loaded beam.  

In the static case, one can show that the deflection of a beam with arbitrary boundary 
conditions may be written as 

 0
1 1

( ) ( ) ( ) .
M N

Fm m Vn n
m n

w x G x F G x V
= =

= +∑ ∑   (8) 

The displacement 0 ( )w x  is a function of the external load vector 1 2, , , mF F F F⎡ ⎤= ⎣ ⎦…  (this 
one may consist of either distributed loads, single force or force couples) and the voltage over 
the piezoelectric patches 1 2, , , nV V V V⎡ ⎤= ⎣ ⎦… .  The influence functions are denoted by  FmG  

and VnG , which might be found based on analytical considerations or might be the result of 
numerical approximation methods (e.g. for a beam with varying material properties, a stepped 
beam, etc… approximate solutions may be obtained by the Ritz or by a finite element 
method). If one uses n piezoelectric patches, it seems reasonable that the displacement at n 
different locations sjx  might be arbitrarily chosen. Accounting for (8), one obtains in matrix 
notation 

 0 ,F VW G F G V= +   (9) 

where the matrices for the influence functions are written as  
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If the inverse matrix of VG  exists2, one solves (9) for the necessary patch voltage vector, 

which reads 

 ( )1
0 .V FV G W G F−= −   (11) 

                                                 
2 This is a topic of ongoing research to find proper patch locations and sensor locations, such that the inverse matrix exist.  
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Due to practical reasons, it is advantageous to prescribe only one voltage signal, so we are not 
allowed to prescribe the voltage across all piezoelectric patches. From static considerations it 
is clear, that the piezoelectric patches, which behave like capacitances from an electrical point 
of view, totally block the direct-current, so the current passing the resistors is equal 

01 12 89i i i i= = = =… , and Kirchhoff’s voltage rule (7) is simplified. The result is an equation 
for the parameters of the resistive network 

 { }11

1 1

1,2, ,7,8 .n nn n

n n n n

RV V n
V V R

−−

+ +

−
= =

−
…   (12) 

NUMERICAL RESULTS – STATIC DISPLACEMENT COMPENSATION 
In this section, we show the correctness of our derived theory by a numerical experiment. Our 
aim is to annihilate the deflection of a tip-loaded cantilever beam equipped with eight 
equidistantly distributed piezoelectric patches (see Fig.1). The geometry and the material 
parameters of the configuration are given in Table 1. We compare the one-dimensional results 
obtained with the presented theory to three-dimensional finite elements results in ANSYS. 
For the one-dimensional model, the Bernoulli-Euler beam is discretized into 34 finite 
elements in the axial direction. As shape functions the well-known Hermite polynomials are 
used to discretize equation (1), which are then coupled to the charge equation of the 
electrodes, the Kirchhoff voltage and current rules (5), (6) and (7). For the 3D-ANSYS model, 
the beam is divided into 96 elements in the axial direction, 6 elements in the thickness 
direction and 8 elements in the thickness direction. The piezoelectric patches consist of 16, 4 
and 8 elements in the axial, thickness and lateral direction. The electrodes are modelled by 
coupling the voltage degrees of freedom. The inner electrodes are kept at zero potential, 
whereas the electrical degrees of freedom of the external electrodes are coupled to CIRCU94 
elements, which model the resistances Rij. The coupled-field solid element SOLID5 is used 
for the substrate and also for the piezoelectric layers, since besides of three degrees of 
freedom for the displacement, it enables an additional degree of freedom for the electrical 
voltage. 

Results for the static displacement, when the single load F0=1N acts at the free end of the 
beam, for both the Bernoulli-Euler model (1d-BE) according to (1)-(7) and the ANSYS-
model (3d-ANSYS), are given in Fig.2. The optimal reference voltage signal V0=250.3V is 
calculated from (11) with 0 0W =   

 [ ] [ ]1 2 8, , , 250.3,205.9,184.9,140.7,120.0,75.6,54.8,10.4 V.TV V V V= =…   (13) 

Substituting (13) into (12), one obtains the values for the resistive circuit, if one resistance or 
the sum of them is specified (Table 1). 
Table 1 Values for the resistances of the circuit, when the deformation at the sensor locations six  should vanish. 

The sum of all resistors is Rtot=2000Ω 
resistance 

(unit) value resistance 
(unit) value resistance 

(unit) value 

( )01 ΩR  0 ( )12 ΩR  355.2 ( )23 ΩR  167.4 

( )34 ΩR  
353.6  ( )45 ΩR  165.6 ( )56 ΩR 354.8 

( )67 ΩR  166.0 ( )78 ΩR 354.4 ( )89R Ω  83.0 
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Fig.2 Static deflection of a tip-loaded beam with the Bernoulli-Euler and the 3d-ANSYS 

(light gray-only tip-force, black-only voltage load, dark gray-shape controlled beam) model 
 
Fig.2 shows that the tip-deflections for the voltage-loaded and for the tip-loaded beam are the 
same, but opposite in sign 3

0 ( ) 0.24 10 mw l −= ± ×  for the Bernoulli-Euler beam (top-left). 
Superposing both results yields that the displacement vanishes at the eight sensor locations 

 [ ]s s1 s2 s3 s4 s5 s6 s7 s8
0.58 , , , , , , , 1,2,3,4,5,6,7,8 m.
8ix l i x x x x x x x x⎡ ⎤= × → = ×⎣ ⎦   (14) 

These locations are drawn by the black x-marks. 
In ANSYS (top-right) a slight deviation occurs for the tip-loaded 3

0 ( ) 0.238 10 mw l −= ×  and 
the voltage-actuated beam 3

0 ( ) 0.232 10 mw l −= − × , therefore a residual deformation remains 
6

0 ( ) 5.7 10 mw l −= × , if both load possibilities are superposed. 
 
NUMERICAL RESULTS – STATIC DISPLACEMENT TRACKING 
Now we generalize the above-derived results by demanding that the displacement vector 
should read  

 [ ] 6
0 0,0,1,1,1,1,1,1 10 mTW −= ×   (15) 

at the eight sensor locations s 8ix l i= × , i.e. only the deformations at the first and the second 
sensor locations should vanish. For this, the necessary distribution of the actuation voltages is 
calculated from (11) and is no longer monotonically decreasing with respect to the x-
coordinate  

 [ ] [ ]1 2 8, , , 250.5,205.9,138.9,232.7,27.9,167.6, 37.3,102.4 VTV V V V= = −…   (16) 
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As (16) shows the maximum voltage occurs at patch #1 with V1=250.3V, followed by the 
patch #4 with V4=232.7V , etc… This distribution is obtained by linking resistors between 
patch #1 and #4, denoted by R14, then one resistance R42 between patch #4 and #2, etc… The 
corresponding values for the resistances are given in Table 2. One sees that the first patch, 
which is actuated by the reference voltage V0=250.3V, since R01=0Ω holds and no voltage 
drop occurs, is also connected to the fourth patch due to R14=122.4Ω. The forth patch is also 
linked to the second patch by R42=186.7Ω and so on. The total sum of the resistances is the 
same as in the previous case Rtot=2000Ω, when no deformation should occur at the eight 
desired locations. The only difference to the previous configuration is that the terminal 
voltage is negative V7=V9=-37.3V. One sees from (16) that the voltage across the electrodes of 
the seventh patch are reversed in sign, i.e. that the electric potential of the external electrode is 
lower the one of the internal electrode. 

Table 2 Values for the resistances of the circuit. The sum of all resistors is Rtot=2000Ω 
resistance 

(unit) value resistance 
(unit) value resistance 

(unit) value 

( )01 ΩR  0.0 ( )14R Ω  122.4 ( )42R Ω  186.7 

( )26R Ω  
266.1 ( )63R Ω  199.7 ( )38R Ω 253.5 

( )85R Ω  518.4 ( )57R Ω 453.2 ( )79R Ω  0.0 

 
The result of this tracking problem is shown in Fig.3. The third to eight sensor locations are 
exactly 610 m−  for the Bernoulli-Euler beam model. 
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Fig.3 Static deflection of a tip-loaded beam with optimal reference voltage and the resistors 

from Table 2. The black marks indicate the target displacements to be tracked 
 

NUMERICAL RESULTS – DYNAMIC DISPLACEMENT COMPENSATION 

In this section we ask if it is also possible annihilate or at least reduce the vibrations, when the 
cantilever beam is dynamically loaded 0( , ) sinF x t F tω= . We will see that the values of the 
resistive circuit strongly affect the performance of our open-loop control technique. We use 
the same network configuration as in the static case, when the static deformations have been 
completely annihilated (Table 1). We compare these results with a system when the 
resistances are the tenfold of these values, so that the total resistance is increased from 
Rtot=2000Ω to Rtot=20kΩ.  

First the results for Rtot=2000Ω are shown in Fig.4 (Bernoulli-Euler FE and ANSYS). If the 
shape control technique is applied (gray curve), the deflection at the free end approaches zero 

0ˆ ( , 0) 0mω → →w l  for low-frequency excitations, as it is expected from Fig.2. For higher 
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frequencies the deflection is reduced by two orders of magnitude for frequencies 
below 50Hz<f . The tip-deflections at the first natural frequency 1 26.5Hz=f  are 

3
0 1ˆ ( , ) 9.0 10 mw l ω −= × (tip-force) and only 3

0 1ˆ ( , ) 0.44 10 mw l ω −= ×  with our proposed 
method (shape control), when the Bernoulli-Euler theory is used. Results from the three-
dimensional ANSYS model are quite similar, the deformation at the resonance are reduced 
from 3

0 1ˆ ( , ) 9.3 10 mw l ω −= × (tip-force) to 3
0 1ˆ ( , ) 0.43 10 mw l ω −= × (shape control).  The major 

differences to the one-dimensional Bernoulli-Euler results are that for low frequencies, the 
remaining tip-deflection does not vanish, when the shape control method is 
applied 6

0 1ˆ ( , ) 5.7 10 mw l ω −= × , (cf. static results from ANSYS results-Fig.2). 
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Fig.4 Frequency response 0ˆ ( )w l  (left) and 0ˆ (0.5 )w l  (right) with Bernoulli-Euler finite 

elements (top) and ANSYS (bottom) for the lower resistive circuit (Rtot=2000Ω) when the 
cantilever beam is excited by the tip-force excitation (black), by the voltage actuation (light 

gray) and by both the voltage and tip-force excitation (shape control-gray) 
 

Results for the higher resistive circuit (Rtot=20kΩ) are shown in Fig.5 (Bernoulli-Euler FE). If 
the shape control technique is applied (gray curve), the deflection is also zero 

0ˆ ( , 0) 0mω → →w l  for excitations in the static limit. But for higher frequencies the 
deflection is not as strong attenuated as for the lower resistive circuit. The tip-deflections at 
the first natural frequency 1 26.5Hz=f  is 3

0 1ˆ ( , ) 8.2 10 mw l ω −= × (tip-force) is lower, since 
the dissipated energy through the resistive shunt cannot be neglected (passive vibration 
control). With our proposed method, the remaining vibration at the free end is 34% of the 
uncontrolled motion and reads 3

0 1ˆ ( , ) 2.8 10 mw l ω −= × . Furthermore, it is obvious that the 
higher the frequency of the excitation signal, the less optimal is the higher-resistive circuit 
and the more inefficient is our shape control method. It can be derived from (5)-(7), see 
(Schoeftner, 2013), that a non-dimensional parameter π1 exists, which determines if the shape 
control design will efficiently reduce structural vibrations or not 
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In (17) the electrical time constant is denoted by total8CRτ = , and depends on the number of 
piezoelectric patches, the total resistance of the circuit and the mean capacitance of the 
piezoelectric patch. In case of a low excitation frequency 0ω →  or of a low resistive 
electrical circuit total 0R → , the proposed control method strongly reduces vibrations. If 

1 1π �  holds, vibrations will only be slightly reduced (see Fig.5) or, in the worst case, even 
amplified. 

0 10 20 30 40 50
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

f [Hz]

|ŵ
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tip-loaded beam (1d-BE)

voltage-loaded beam (1d-BE)

shape control result (1d-BE)

frequency response (1d BE) frequency response (1d BE)

8.2mm

2.8mm

 
Fig.5 Frequency response 0ˆ ( )w l  (left) and 0ˆ (0.5 )w l  (right) with Bernoulli-Euler finite 

elements for the higher resistive circuit (Rtot=20kΩ) when the cantilever beam is excited by 
the tip-force excitation (black), by the voltage actuation (light gray) and by both the voltage 

and tip-force excitation (shape control-gray) 
 

 

CONCLUSION 
In this contribution we presented a new method how to control vibrations of elastic slender 
beam-type structures. This is known under shape control in the literature. First the basic 
mechanical and electrical relations for a slender beam within the framework of Bernoulli-
Euler, which is equipped with piezoelectric patches, whose electrodes are connected to a 
resistive circuit, are presented. Then an analytical expression for the lateral deflection of a 
beam is given, which uses so-called influence functions of the force-loaded beam and the 
voltage-loaded piezoelectric patches. If the displacements of n arbitrary locations along the 
beam length are to be controlled, one can achieve this by a proper actuation of n piezoelectric 
control agencies, by inverting the set of linear equations relating the displacement, the force 
load and the voltage actuation. The correctness of our theory, when a certain trajectory is 
prescribed in the static regime and the vibrations are to be attenuated in the dynamic regime, 
is shown by one-dimensional results using Bernoulli-Euler elements and also by a three-
dimensional electromechanically-coupled finite element calculation performed in ANSYS.  
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Appendix A 
 
For the numerical case study the material parameters and the geometrical dimensions 
(Aluminum for the substrate with index s, PZT-5A for the piezoelectric patch with index p) 
are listed in Table 3. The effective piezomodulus, the modulus of elasticity and the strain-free 
permittivity are obtained from the values (listed in the following) by taking advantage of the 
transformation rules, see (Schoeftner, 2011b). 
 
Material properties of PZT-5A: 

• Density: -3
p 7750kgmρ =  

• Elasticity components in Voigt notation: 9 -2
11 22 123 10 Nm= = ×C C , 

9 -2
12 76.7 10 Nm= ×C , 9 -2

13 23 70.3 10 Nm= = ×C C , 9 -2
33 97.1 10 Nm= ×C , 

9 -2
44 55 22.3 10 Nm= = ×C C , ( ) 9 -2

66 11 120.5 23.15 10 Nm= − = ×C C C , else 
-20 Nm=ijC  

• Components of piezoelectric modulus in Voigt notation: -2
31 32 7.15Asm= = −e e , 

-2
33 13.7Asm=e , -2

24 15 11.9Asm= =e e , else -20Asmije =  
• Components of permittivity in Voigt notation: 11 22 01649κ κ ε= = × , 33 01750κ ε= ×  

with 12 -1 -1
0 8.854 10 AsV mε −= × , else -1 -10AsV mκ =ij  

 
Table 3 Parameters used in the numerical example 

variable (unit) value variable (unit) value 

( )-3
p kgmρ  7750  ( )-3

s kgmρ  2700  

( )1p mz  34.00 10−×  ( )2p mz  
34.40 10−×  

( )1s mz  34.00 10−− ×  ( )2s mz  
34.00 10−×  

( )ml  0.5  ( )p ml  
0.03  

( )p -1 -1
33 AsV mκ�  82.15 10−×  ( )p -2

31 Asme� 10.94−  

( )p -2
11 NmC�  106.29 10×  ( )s -2

11 Nm�C  
107.22 10×  

( )a mix  ( )0.01625 1 8l i+ × − ( )s mix  8×l i  

( )s mb  0.05  ( )p mb  
0.05  

( )-1AsVC  
88.05 10−×  ( )0 NF  

1 
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