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ABSTRACT

This paper presents a comprehensive intelligent method for detecting faults in a multi-
component complex system (e.g. aircraft engine). This is accomplished in two phases 1)
Decompose the signals into components pertaining to system’s components ‘source
separation’ and if the components of the system are not well identified, the method used is
called ‘blind source separation’. The foremost existing mathematical solution to blind source
separation is Independent Component Analysis (ICA), 2) in the next step signals from the
actual state of the components are compared with the signals in database in order to identify
the state of each component. Several artificial intelligent methods such as Neural Networks
and Fuzzy Logic are used for the purpose of comparison and decision making.

Keywords: cyclic spectral analysis, cyclostationary, bearing fault detection, complex
machinery, condition monitoring

INTRODUCTION

In recent years, the objective of diagnostic of machine by vibration analysis has been
considerably changed. The initial objective was the security of machine against the important
damages. If the vibration amplitude (displacement, velocity or acceleration) reaches to the
limit value, the alarm rings and the machine stop. This type of maintenance is called
preventive maintenance. The objective is not only to protect the machine but also to detect
and identify defaults in the first step in order to have the necessary time to schedule repairs
with minimum disruption to operations and production. This new type of maintenance is
called predictive maintenance. The key factor of the predictive maintenance is diagnostic. A
diagnosis is not an assumption; it is a conclusion reached after a logical evaluation of the
observed symptoms. Then, the diagnostic is based on a systematic inspection in vibration
signal to find all susceptible defects, which may affect the machine.

Aerospace industry is leading advanced technology exporter. In order to maintain its
competitive edge in Maintenance, Repair and Overhaul (MRO), this sector of industry must
employ the latest advanced technologies available. The reliable and secure operation of
mechanical systems is critical importance. In the aerospace industry, both structural and non-
structural components must be adequately inspected and maintained as long as an aircraft
remains in service. The challenge is to develop an intelligent health monitoring system that
will adequately address aging aircraft components.
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The specific objectives of the present paper fall into the following categories:

A) Develop a Real-Time Health Monitoring System for rotating machinery;

B) Develop of a System for Automatic Detection and Characterization of Hidden
Corrosion in Aircraft Components;

(0] Develop of a Decision Support Tool capable of automatically detecting different
faults, in rotating machinery, at an early stage. The system will take the form of a
library for different rotating machinery components.

Bearing failure can lead to major damage to rotating components and its diagnosis and
prognosis are therefore of paramount importance. Techniques and approaches for detecting
bearing faults abound. However, application of these methods is limited for complex systems
such as aircraft engines. This stems from the fact that the complex configuration of the system
and inaccessibility make it difficult to place the vibration transducers close to the bearings. In
most cases, available instrumentation is limited to a few vibration transducers on the casing of
the machine. In such cases, the vibration due to bearing faults are barely detectable using
traditional methods, as they normally make only a small contribution to the overall energy
and this is to some extent dissipated by the transmission path. For bearing fault detection to be
effective in such applications, the methodology must be capable of detecting faint bearing
signals and also allow consistent trending and tracking. This study examines these
requirements in detail and presents an experimental assessment of newly emerging cyclic
spectral analysis in this field for such requirements.

Bearings are one of the key components found in almost any rotating machinery and have
notably drawn attention from the health monitoring research community. As bearing failure
can lead to catastrophic damage to other rotating components, its diagnosis and prognosis are
of paramount importance. Fortunately the mechanics of bearing deterioration are well-known.
The development of the very familiar bearing characteristic frequencies (tones) dates back to
a few decades ago [Shahan and Kamperman 1976]. These characteristic patterns have enabled
monitoring of bearings through vibration data acquired using pertinent transducers. For any
fault on the bearing, its corresponding tone is expected to appear on the frequency domain
(spectral) representation of vibration signals. Fourier transforms (FT) and their derivatives,
namely, Fast Fourier transforms (FFT) and Short Time Fourier Transforms (STFT) are
extensively used to obtain such spectral representations. One difficulty with this approach is
that the vibration transducers are usually required to be mounted close to the bearings. This is
due to the fact that the energy of vibration signals attenuates as one goes farther away from
the bearings and the likelihood of detecting bearing tones decreases. Also, in complex
systems, interfering noise from other components can further complicate the situation.

In highly sophisticated and complex systems such as gas turbine engines, complexity of the
system and inaccessibility make it difficult to place the vibration transducers close to
bearings. In most cases, available instrumentation is very limited and only a few
accelerometers are available that collect the vibration signal from the casing of the engine.
With many components producing vibration, the bearing tones are very hard to distinguish in
the spectral representation of the vibration signals. Moreover, they normally generate minimal
energy in the early stages of failure and this energy is further dissipated by the complex
transmission path.

To tackle the problem of making the faint bearing signal more distinctive among the signals
from other components, different signal processing approaches can be adopted. One approach
is to regard this case as a blind source separation (cocktail party) problem and turn to
developed statistical and mathematical methods for this purpose, mainly Independent
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Component Analysis (ICA) [Comon and Jutten 2010], to separate bearing tones from
interfering signals. Apart from statistical independence, no other specific assumption is made
on the type of signal produced by the bearings. The main focus usually is put on the mixing
mechanisms which may be considered either instantaneous (linear) or convolutive. This
approach has been experimentally tested by a number of researchers [Comon and Jutten 2010,
Capdevielle et al 1996, Gelle et al. 2000 and 2001, Yampa et al. 2002, Serviere et al. 2004
and 2005, and Ye et al. 2006] and despite promising preliminary results, it seems to be far
from the level of robustness and reliability required for use in common practice. One reason is
due to strict ICA requirements such as equality or superiority of the number of sensors to the
number of sources. Another reason is the inherent ambiguity in the scale and permutation of
the results obtained from ICA. Furthermore, inconsistency between ICA assumptions and the
true characteristics of vibration sources can be listed as one of the pitfalls (Antoni 2005).

An alternative approach is to avoid the effort of “separating” the actual bearing signals from
the background noise. In this approach, a threshold for the noise level in different regions of
the spectral representation of the vibration signal is established and the signal is monitored for
any levels which exceed this threshold. Recently, Clifton et al. [Clifton and Tarassenko 2009]
introduced a probabilistic method called the probabilistic novel tracked order. In this method,
the spectrogram of the vibration signal gathered from an accelerometer on the casing of a jet
engine (gas turbine engine) is divided into speed and frequency bins. Then for each bin, by
adopting Extreme Value Theory (EVT) concepts, a dynamic threshold is established for the
noise floor. It is demonstrated using real engine data that this technique is actually capable of
detecting bearing tones as they protrude above the established noise floor. A drawback with
this technique, though, is that no distinction between the characteristics of the noise and the
actual bearing tone is made. As long as a bearing tone does not exceed the noise threshold, it
is considered noise and therefore ignored. Bearing tones must be strong enough to be detected
by this technique. Further, should the overall noise level increase for any reason it can mask a
bearing tone which could be otherwise detected.

An alternative to above approaches is to use the specifications and characteristics of signals
produced due to bearing faults as a basis for distinction. A monitoring scheme can be
established that probes the signals acquired to recognize such specifications. Bearing defects
are now known to produce vibration with recurring impulsiveness in the energy. Signals with
such behaviour are known in technical terms to be cyclostationary. Briefly, this approach
consists in detecting any cyclostationary behaviour in the vibration signals and checking for
any association with bearing defects. Very recently, Jérdme Antoni published a number of
articles ([Antoni et al. 2007 and 2009] and references therein) on this subject. Also, for a
more detailed review on bearing fault diagnosis in general, interested readers may consult
[Randall and Antoni 2011].

In this study, different aspects of applying cyclostationarity-based methods to the case of
bearing fault detection in complex machinery are investigated. For a bearing fault detection
technique to be effective in such applications, it must retain two features. One is the ability to
detect faint bearing tones as they pass through the transmission path. The other is to allow
consistent trending. This paper is structured as follows: first a short description of the
mechanics of bearing failures is given. Then, concepts and formulations for cyclostationarity
are briefly introduced. Finally, two sets of relevant experiments are provided, followed by a
discussion on the results.
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BEARING FAULTS AND CYCLOSTATIONARY

Bearing Faults

As mentioned earlier the mechanics of bearing faults are to a great extent known and
characteristic frequencies have been formulated. These frequencies for the common case
where only the inner race of the bearing is rotating are listed in Table 1.

Table 1: Characteristic frequencies of bearing faults [Darlow et al. 1974]

Rotation frequency of a rolling element assembly fe. Dg
f.=—=(1——cosf)
e~ 2" Dj
Rotational frequency of a rolling element f.Dg D3
fo=77(1——cos*8)
2 Dg DP
Over-rolling frequency of one point on the inner rin f D
& equeney P & fo =3 Na(1+4 57 cos6)
Over-rolling f f int on the outer ri : D
ver-rolling frequency of one point on the outer ring fo = % No(1— D_j cosO)

D, D
=f —(1——cos*8
fo= it (1= c0s0)
fi: rotation speed, Dg: roller diameter, Dp: pitch diameter, Ng: the number of balls and 0: the
contact angle of the ball

Over-rolling frequency of one point on a rolling element

One misconception regarding the above formulas is that they are often misinterpreted to
represent the bearing’s natural frequencies. A closer look at the procedure of obtaining these
formulas can provide a better understanding of the concept. The procedure for obtaining each
one of these formulas is briefly: if any defective point is considered on any of the main
bearing components (i.e., rolling element, outer and inner races), then based on the geometry
of the bearing components and kinematic concepts the frequency of any possible contact
between that point and other components is calculated. For example, if there is a defective
point on the inner race of bearing, the rate at which such point comes into contact with the
rolling element determines the over-rolling frequency of one point on the inner ring (f;).
Depending on the case, the introduction into and out of the bearing load zone can be of
importance, which necessitates calculation of the rolling assembly frequency. Overall, the
basis for calculating these formulas is solely kinematics; the bearing’s natural frequencies are
dependent on the design, geometry and material among many other factors and it is not
possible to establish a general formulation for all bearings.

Another misconception related to bearing characteristic frequencies is that bearings are
sometimes thought to produce harmonic sinusoidal components at such rates. This may stem
from the fact that conventional bearing diagnosis systems are largely based on spectral
analysis and consequently Fourier Transforms (FT) which represent signals with harmonic
sinusoidal components. It should be clear from the previous paragraph that bearing
frequencies are produced by striking of a defective point of a bearing component on other
component. Such striking results in excitation (ringing) of the bearing assembly at its natural
frequencies. The striking itself occurs at rates equal to the characteristic frequencies (easily
computable) and creates impulses in the signal and not harmonic sinusoidal. The ringing
effect, on the other hand, occurs at natural frequencies of the bearing components in the shape
of a random stationary signal at normally higher frequencies (usually unknown). The
combination of these two phenomena creates vibration with repetitive bursts of energy. To be
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more accurate, vibration signals produced by a bearing defect are modulated signals; vibration
energy at natural frequencies of the bearing (carrier frequency) is modulated with
characteristic frequencies of the bearing (modulation frequency). Such signals in signal
processing terminology are entitled cyclostationary.

According to above discussion, typical spectral (FFT) analysis is not a strong tool for
detecting bearing anomalies as it gives the averaged spectral representation (spectrum) based
on stationary assumptions. In fact, spectral analysis is only capable of detecting bearing
defects when they are greatly developed and in presence of little noise. In such cases the
modulation frequency and its harmonics are visible on the spectrum. An alternative for typical
spectral analysis is to use spectrogram (STFT) or any other joint time-frequency
representation. In this case, the repetitive bursts of energy occurring at higher frequencies
(ringing frequencies of the bearing component) are observable throughout the spectrogram.
The duration between successive bursts is equal to the inverse of any one of the characteristic
frequencies depending on the case. These methods are very representative and appropriate for
analysis purposes. On the other hand, they are not suitable for an automated diagnosis system
since it is difficult to establish a robust trending and alarming scheme.

Envelope analysis [Darlow et al. 1974] is also one of the methods widely used for bearing
fault detection. It consists in spectral analysis of the envelope of the time-domain signal. For
envelope analysis to be effective it is usually necessary that sensors be located very close to
the bearing so that the repetitive bursts of energy due to bearing faults are discernible in the
time-domain signal. This limits its use for applications where the sensors are not mounted as
such or where the vibration produced by other components mask the recurring pulses in the
signals. One solution to this limitation is to band-pass filter the signal around some
appropriate frequency band and then performs envelope analysis on the filtered signal. Again,
selecting the appropriate band entails knowing the natural frequency of the bearing assembly
a priori.

One might think of performing envelope analysis on the signal narrow-band filtered around
all frequencies of interest. This bears a similarity to taking STFT of the signal and then
performing envelope analysis on each frequency bin over the range of interest. This concept
sets the stage for what is covered in the following section under cyclic spectral analysis.

Cyclic spectral analysis

Given x(t) the signal in time, cyclic spectral analysis uses FT to scrutinize the alternation of
the spectral contents of the signal at each frequency f throughout signal duration T. More
accurately, if the narrow-band filtered constituent of the signal x(z) around frequency f is
denoted as x/(t) then the FT of the square of this signal reads:

].]'.l".l’fl.I _}m%fr |_,I(tj|2g_i'2!?ﬂ:rdt E'q(lj

where o is cyclic frequency (carrier frequency) as opposed to f the spectral frequency
(modulation frequency). Since the representation obtained using this equation will actually
reveal the modulation of the signal in terms of cyclic frequency, it is also called the cyclic
modulation spectrum. The above formulation is straightforward and apt for understanding the
concept. Nonetheless, deriving the discrete version of this formulation suitable for
implementation is not as straightforward. An alternative approach to formulate the same
concept is to use correlation approach, which leads to a more straightforward discrete
formulation, yet harder to grasp. This approach is described as follows [Gardner 1986]:
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According to the definition of cyclostationarity, the mean and the autocorrelation for a
cyclostationary signal (or process in general) x(z) are periodic and the following equations
hold:

my(t +T) = mg(t) Eq.(2)

Ruplty+ T t, +T)=R,.(t,t;) Eq.(3)

for any possible ¢, #; and ¢, and where 7 denotes the period. For notational simplicity Eq. 1 can
be reformulated as:

RH(t+T+%,t+T—%)=RH(t+%,t—%) Fq.(4)

Now if the Fourier coefficients of the autocorrelation function for a range of frequencies (o)

equal to integer multiples of the fundamental frequency (1/T) are written as:
T

1z T T "
RE.(7) =FJ.IRH(t+i,t—i)e"‘”“rdt Eq.(5)

Then the Fourier expansion of the autocorrelation function reads:

Rex(t+2,t=2) = T, RE, (D)e™ Eq. (6)
To generalize this notation, Eq. 5 must be revised so that it covers the whole range of possible
frequencies. By letting 7" be any possible periodicity in the signal, an extension to Eq. 5 can be
expressed as:

T
1z T T "
R;X(rj=ly_xgh—ﬂfrﬂﬂ(r —|-E,t—§)e_““‘rdt Eq.(7)

According to above notation, the cyclostationarity of a signal x (#) will manifest itself as a
nonzero Fourier coefficient. Similarly, a non-zero coefficient at any frequency o conveys that
the signal exhibits cyclostationarity at that frequency. In its standard terminology frequency o

is referred to as cyclic (or cycle) frequency and RL(T) asa cyclic autocorrelation function.
The set of cyclic frequencies for which the cyclic autocorrelation function is non-zero is
called the cyclic spectrum. In an analogy to spectral analysis where the spectral density is
defined as the Fourier transform of the autocorrelation function, the cyclic spectral density is
defined as:

ste= | RE@e Eq.(8)

Finally, from Eq. (8) the discre_t: cyclic spectrum for a discrete signal x(k4t) (for k=0, 1,2,...)
is adapted as:

s8.1f1= Z RE. [nAt]ei2mmats Eq.(9)
n=0

where At and K denote the sampling interval and number of samples respectively and the
discrete autocorrelation function is obtained as:

—izna(k+a jat Eq. (10)

E—=m

K
1 .
RE.[nAt] = lim 2K+ 12 R, (At | nAt kAt)e
k=10
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EXPERIMENT

As mentioned earlier, for a bearing detection method to be effective in applications related to
complex machinery it must allow consistent trending and be able to detect defects from a
weak signal. In this section cyclic spectral analysis is examined for these features using two
sets of experiments.

In principle, the transmission path mainly dissipates the energy of the signal but generally
should not affect certain characteristics of the signal such as its cyclostationarity. For the
transmission path to diminish the signal’s cyclostationarity it must operate as a rather
complicated filter that evens out the repetitive bursts of energy that occur in a specific
frequency range. Therefore, it is reasonable to expect that the cyclostationarity behaviour of
the signal is preserved through the transmission path. In our first case study, this premise is
tested experimentally by collecting the signals from a faulty bearing using an accelerometer
positioned far from the bearing.

In automated health monitoring and fault diagnosis, it is essential for a method to allow
robust, attainable and consistent trending. As an example, cyclostationarity due to bearing
anomalies can be detected with most time-frequency methods as long as the ringing
frequencies or the natural frequencies of the bearing assembly are known to some extent.
However, in the majority of cases the natural frequencies of the bearing assembly are not
readily available. This limits the application of such methods in automated health monitoring.
Another important point is that the feature being tracked must be consistent in the sense that
its value bears some correspondence to severity of faults. In our second case study,
cyclostationarity is examined for these requirements through a run-to-failure experiment. The
description of these two case studies followed by discussion and the results for each case are
represented in the following sections.

First Case Study — Experiment Setup and Data Acquisition

In the first case, vibration signals were collected from a test setup at Ecole Polytechnique de
Montréal consisting of a 2 HP motor driving a shaft supported by two different bearings. One
bearing was an overhauled roller bearing (PWC15) from an aircraft engine provided by Pratt
& Whitney Canada. The other bearing was a new SKF ball bearing. Each bearing was
contained in housing and bolted to an adjustment base. The adjustment base was also bolted
to a main stiff base which was fixed to the concrete floor. An accelerometer was mounted on
each bearing housing along with two more on the main base (Figure 1). Signals were gathered
at a sampling frequency of 50 kHz during operation of a shaft running at 1200 RPM (20 Hz).
One of the accelerometers on the base was positioned about 4ft. away from the shaft
assembly. Signals from this accelerometer were used for analyzing the effect of the
transmission path on the cyclostationarity of the signals.

Acce

Fig. 1: Test setup at Ecole Polytechnique de Montreal
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Results and Discussions for the First Test Case

Visual inspection of PWCI15 bearing indicated an outer race fault. The SKF bearing, on the
other hand, was a new bearing. Figure 2 shows the cyclic spectrum or cyclic spectral density
of the signals gathered by accelerometer no.3. This was obtained from a 1 sec portion of the
signal. Two dominant peaks are clearly discernible at cyclic frequencies of 90 Hz and 180 Hz
and for a range of spectral frequencies centred around 4 kHz. This indicates that the vibration
energy around 4 kHz (the natural frequencies of the bearing assembly) is modulated with a
modulation frequency of 90 Hz. This modulation frequency coincides well with the over-
rolling frequency of one point of the outer race of the PWC15 bearing given in Table 2.

Table 2: Characteristic frequencies of the bearings used in the experiments

Description PWC15 Rexnord
Rotational frequency of rolling element assembly [Hz] fe 7.73 14.8
Rotational frequency of a rolling element [Hz] f; 41.7 140
Over-rolling frequency of one point on inner ring [Hz] fip 147 297
Over-rolling frequency of one point on outer ring [Hz] fep 927 236
Over-rolling frequency of one point on rolling element [Hz]  f,, 83.5 280
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Fig. 2: Cyclic spectral density of the faulty PWC15 bearing
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Fig. 3: Low frequency range spectrogram and spectrum of the faulty PWC15 bearing

To compare this method over typical methods, the spectrum and spectrogram of the signals up
to 250 Hz are shown in Figure 3 along with the corresponding time-domain signal. As is
typical with spectral analysis for the purpose of bearing fault detection, it is expected to have
a peak at around 92 Hz on both diagrams. The spectrum in this case shows a minuscule peak
around 95Hz. Slightly higher spectral energy can also be observed from the spectrogram
around the same frequency. Such low amplitude indications would be completely masked in
presence of noise. Moreover, as mentioned earlier the bearing used in this experiment was an
overhauled bearing with a predominantly developed outer race fault.

According to the discussion in Section 2, in order for the vibration produced by faulty
bearings to be clearly discernible on the spectrogram one needs to look at a broader frequency
range. Figure 4 shows the spectrogram and spectrum of signal up to 12.5 kHz. On the
spectrogram, the outer race fault manifests itself as a series of bursts taking place at around
3.5 kHz (the natural frequencies of bearing assembly or carrier frequencies) with an interval
equal to the inverse of the outer race fault characteristic frequency (modulation frequency).
These results suggest that for this approach to be effective in automated monitoring, prior
knowledge of the natural frequencies of bearing assembly is required. Moreover, it is
necessary that other machine components do not produce vibration within the same frequency
band and jumble the signal. This is definitely not the case for complex systems with many
components producing vibration.
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Fig. 4: Wide range frequency spectrogram and spectrum of the faulty PWC15 bearing

Second Case Study — Experiment Setup and Data Acquisition

In order to investigate if the cyclic spectral density enables consistent trending, a bearing data
set from a run-to-failure test provided by the Center for Intelligent Maintenance Systems
(IMS) of University of Cincinnati through NASA Ames Prognostics Data Repository [Lee et
al. 2007] was used.

Results and Discussions for the Second Test Case

In this test four double row Rexnord ZA-2115 bearings were mounted on a shaft driven by an
AC motor (Figure 5). Vibration data was gathered using four accelerometers, one on each
bearing housing, at a sampling rate of 20 KHz. A spring mechanism exerted a radial load of
6000Ibs on the rotating shaft and the bearing. Data snippets of approximately 1 second in
duration were gathered at 10-minute intervals throughout a run-to-failure test. In this study,
around 50 snippets were selected over a 190 min interval covering the progress of bearing
from healthy to faulty. At the end of this test, an outer race fault on the third bearing was
observed.
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Fig. 5: Schema of the test rig at IMS, of University of Cincinnati (by courtesy of [Lee
et al. 2007])

According to Table 1, due to a fault on the outer race of the third bearing, it is expected that
the signal exhibit degrees of cyclostationarity at a cyclic frequency of 236 Hz as the fault
progresses. Figure 6 shows the cyclic spectrum of the signals gathered by accelerometer 3 on
the third bearing when the outer race fault is developed. As shown, the vibration energy
distributed around 4.5 kHz is modulated with a frequency of about 230 Hz which slightly
deviates from the calculated characteristic frequency for an outer race. This deviation has
been reported in [Qiu et al. 2006] as well.

In order to analyse the correspondence between the cyclic spectral energy and the progress of
the bearing defect, the overall narrow-band (5 Hz) cyclic spectral energy around the bearing’s
outer race frequency (231 Hz) is studied. Figure 7 shows the variation of the magnitude of
vibration energy values with respect to operation time. According to this graph, first
indications of bearing fault appear after 92 hours of operation. Comparing this to the
bearing’s total service life in number of hours (i.e., 165 hours) this can indeed be considered
an early indication. After this early indication, the value of the cyclic energy goes through a
number of significant fluctuations, which can be due to healing phenomenon [Williams et al.
2001]. This indicates that strict connections cannot be established between cyclic energy and
the severity of fault. Nevertheless, it remains a significant distance from the initial value
observed for normal conditions during early hours of operation.
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Fig. 7: Progress of banded cyclic spectral density

This experiment demonstrates that cyclic spectral analysis should not be used as a tool to
measure the severity of bearing faults. On the other hand, it can be utilized as a reliable
monitoring tool because its value always reads higher for a faulty bearing than for a normal
one; and also it enables early detection of bearing faults.
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CONCLUSIONS

In this study the problem of bearing fault detection in complex machinery was revisited. Two
prerequisites for a method to be effective in detecting bearing faults in complex systems were
identified to be the capability of detecting bearing faults from a faint signal; and a consistent
trending feature. Relevant shortcomings of traditional approaches were discussed. Cyclic
spectral density was then argued to be an appropriate candidate that could overcome
difficulties with traditional approaches and meet the prerequisites. This was examined through
two sets of experiments. In conclusion, the experimental results were satisfactory. As a
recommendation for future work, the effectiveness of this method can be further investigated
with signals obtained from other test cases as well as a real industrial case.
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