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ABSTRACT 

This paper presents a comprehensive intelligent method for detecting faults in a multi-
component complex system (e.g. aircraft engine). This is accomplished in two phases 1) 
Decompose the signals into components pertaining to system’s components ‘source 
separation’ and if the components of the system are not well identified, the method used is 
called ‘blind source separation’. The foremost existing mathematical solution to blind source 
separation is Independent Component Analysis (ICA), 2) in the next step signals from the 
actual state of the components are compared with the signals in database in order to identify 
the state of each component. Several artificial intelligent methods such as Neural Networks 
and Fuzzy Logic are used for the purpose of comparison and decision making.    

Keywords: cyclic spectral analysis, cyclostationary, bearing fault detection, complex 
machinery, condition monitoring  

 

INTRODUCTION 

In recent years, the objective of diagnostic of machine by vibration analysis has been 
considerably changed. The initial objective was the security of machine against the important 
damages. If the vibration amplitude (displacement, velocity or acceleration) reaches to the 
limit value, the alarm rings and the machine stop. This type of maintenance is called 
preventive maintenance. The objective is not only to protect the machine but also to detect 
and identify defaults in the first step in order to have the necessary time to schedule repairs 
with minimum disruption to operations and production. This new type of maintenance is 
called predictive maintenance. The key factor of the predictive maintenance is diagnostic. A 
diagnosis is not an assumption; it is a conclusion reached after a logical evaluation of the 
observed symptoms. Then, the diagnostic is based on a systematic inspection in vibration 
signal to find all susceptible defects, which may affect the machine. 
 
Aerospace industry is leading advanced technology exporter. In order to maintain its 
competitive edge in Maintenance, Repair and Overhaul (MRO), this sector of industry must 
employ the latest advanced technologies available. The reliable and secure operation of 
mechanical systems is critical importance. In the aerospace industry, both structural and non-
structural components must be adequately inspected and maintained as long as an aircraft 
remains in service. The challenge is to develop an intelligent health monitoring system that 
will adequately address aging aircraft components. 
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The specific objectives of the present paper fall into the following categories:  
A) Develop a Real-Time Health Monitoring System for rotating machinery; 
B) Develop of a System for Automatic Detection and Characterization of Hidden 

Corrosion in Aircraft Components; 
C) Develop of a Decision Support Tool capable of automatically detecting different 

faults, in rotating machinery, at an early stage. The system will take the form of a 
library for different rotating machinery components. 

Bearing failure can lead to major damage to rotating components and its diagnosis and 
prognosis are therefore of paramount importance. Techniques and approaches for detecting 
bearing faults abound. However, application of these methods is limited for complex systems 
such as aircraft engines. This stems from the fact that the complex configuration of the system 
and inaccessibility make it difficult to place the vibration transducers close to the bearings. In 
most cases, available instrumentation is limited to a few vibration transducers on the casing of 
the machine. In such cases, the vibration due to bearing faults are barely detectable using 
traditional methods, as they normally make only a small contribution to the overall energy 
and this is to some extent dissipated by the transmission path. For bearing fault detection to be 
effective in such applications, the methodology must be capable of detecting faint bearing 
signals and also allow consistent trending and tracking. This study examines these 
requirements in detail and presents an experimental assessment of newly emerging cyclic 
spectral analysis in this field for such requirements. 

Bearings are one of the key components found in almost any rotating machinery and have 
notably drawn attention from the health monitoring research community. As bearing failure 
can lead to catastrophic damage to other rotating components, its diagnosis and prognosis are 
of paramount importance. Fortunately the mechanics of bearing deterioration are well-known. 
The development of the very familiar bearing characteristic frequencies (tones) dates back to 
a few decades ago [Shahan and Kamperman 1976]. These characteristic patterns have enabled 
monitoring of bearings through vibration data acquired using pertinent transducers. For any 
fault on the bearing, its corresponding tone is expected to appear on the frequency domain 
(spectral) representation of vibration signals. Fourier transforms (FT) and their derivatives, 
namely, Fast Fourier transforms (FFT) and Short Time Fourier Transforms (STFT) are 
extensively used to obtain such spectral representations. One difficulty with this approach is 
that the vibration transducers are usually required to be mounted close to the bearings. This is 
due to the fact that the energy of vibration signals attenuates as one goes farther away from 
the bearings and the likelihood of detecting bearing tones decreases. Also, in complex 
systems, interfering noise from other components can further complicate the situation. 

In highly sophisticated and complex systems such as gas turbine engines, complexity of the 
system and inaccessibility make it difficult to place the vibration transducers close to 
bearings. In most cases, available instrumentation is very limited and only a few 
accelerometers are available that collect the vibration signal from the casing of the engine. 
With many components producing vibration, the bearing tones are very hard to distinguish in 
the spectral representation of the vibration signals. Moreover, they normally generate minimal 
energy in the early stages of failure and this energy is further dissipated by the complex 
transmission path. 

To tackle the problem of making the faint bearing signal more distinctive among the signals 
from other components, different signal processing approaches can be adopted. One approach 
is to regard this case as a blind source separation (cocktail party) problem and turn to 
developed statistical and mathematical methods for this purpose, mainly Independent 
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Component Analysis (ICA) [Comon and Jutten 2010], to separate bearing tones from 
interfering signals. Apart from statistical independence, no other specific assumption is made 
on the type of signal produced by the bearings. The main focus usually is put on the mixing 
mechanisms which may be considered either instantaneous (linear) or convolutive. This 
approach has been experimentally tested by a number of researchers [Comon and Jutten 2010, 
Capdevielle et al 1996, Gelle et al. 2000 and 2001, Yampa et al. 2002, Servière et al. 2004 
and 2005, and Ye et al. 2006] and despite promising preliminary results, it seems to be far 
from the level of robustness and reliability required for use in common practice. One reason is 
due to strict ICA requirements such as equality or superiority of the number of sensors to the 
number of sources. Another reason is the inherent ambiguity in the scale and permutation of 
the results obtained from ICA. Furthermore, inconsistency between ICA assumptions and the 
true characteristics of vibration sources can be listed as one of the pitfalls (Antoni 2005). 

An alternative approach is to avoid the effort of “separating” the actual bearing signals from 
the background noise. In this approach, a threshold for the noise level in different regions of 
the spectral representation of the vibration signal is established and the signal is monitored for 
any levels which exceed this threshold. Recently, Clifton et al. [Clifton and Tarassenko 2009] 
introduced a probabilistic method called the probabilistic novel tracked order. In this method, 
the spectrogram of the vibration signal gathered from an accelerometer on the casing of a jet 
engine (gas turbine engine) is divided into speed and frequency bins. Then for each bin, by 
adopting Extreme Value Theory (EVT) concepts, a dynamic threshold is established for the 
noise floor. It is demonstrated using real engine data that this technique is actually capable of 
detecting bearing tones as they protrude above the established noise floor. A drawback with 
this technique, though, is that no distinction between the characteristics of the noise and the 
actual bearing tone is made. As long as a bearing tone does not exceed the noise threshold, it 
is considered noise and therefore ignored. Bearing tones must be strong enough to be detected 
by this technique. Further, should the overall noise level increase for any reason it can mask a 
bearing tone which could be otherwise detected. 

An alternative to above approaches is to use the specifications and characteristics of signals 
produced due to bearing faults as a basis for distinction. A monitoring scheme can be 
established that probes the signals acquired to recognize such specifications. Bearing defects 
are now known to produce vibration with recurring impulsiveness in the energy. Signals with 
such behaviour are known in technical terms to be cyclostationary. Briefly, this approach 
consists in detecting any cyclostationary behaviour in the vibration signals and checking for 
any association with bearing defects. Very recently, Jérôme Antoni published a number of 
articles ([Antoni et al. 2007 and 2009] and references therein) on this subject. Also, for a 
more detailed review on bearing fault diagnosis in general, interested readers may consult 
[Randall and Antoni 2011]. 

In this study, different aspects of applying cyclostationarity-based methods to the case of 
bearing fault detection in complex machinery are investigated. For a bearing fault detection 
technique to be effective in such applications, it must retain two features. One is the ability to 
detect faint bearing tones as they pass through the transmission path. The other is to allow 
consistent trending. This paper is structured as follows: first a short description of the 
mechanics of bearing failures is given. Then, concepts and formulations for cyclostationarity 
are briefly introduced. Finally, two sets of relevant experiments are provided, followed by a 
discussion on the results. 
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BEARING FAULTS AND CYCLOSTATIONARY 

Bearing Faults 

As mentioned earlier the mechanics of bearing faults are to a great extent known and 
characteristic frequencies have been formulated. These frequencies for the common case 
where only the inner race of the bearing is rotating are listed in Table 1. 

Table 1: Characteristic frequencies of bearing faults [Darlow et al. 1974] 

Rotation frequency of a rolling element assembly 

 
Rotational frequency of a rolling element 

Over-rolling frequency of one point on the inner ring 

 
Over-rolling frequency of one point on the outer ring 

 
Over-rolling frequency of one point on a rolling element 

fs: rotation speed, DB: roller diameter, DP: pitch diameter, NB: the number of balls and θ: the 
contact angle of the ball 

 

One misconception regarding the above formulas is that they are often misinterpreted to 
represent the bearing’s natural frequencies. A closer look at the procedure of obtaining these 
formulas can provide a better understanding of the concept. The procedure for obtaining each 
one of these formulas is briefly: if any defective point is considered on any of the main 
bearing components (i.e., rolling element, outer and inner races), then based on the geometry 
of the bearing components and kinematic concepts the frequency of any possible contact 
between that point and other components is calculated. For example, if there is a defective 
point on the inner race of bearing, the rate at which such point comes into contact with the 
rolling element determines the over-rolling frequency of one point on the inner ring (fir). 
Depending on the case, the introduction into and out of the bearing load zone can be of 
importance, which necessitates calculation of the rolling assembly frequency. Overall, the 
basis for calculating these formulas is solely kinematics; the bearing’s natural frequencies are 
dependent on the design, geometry and material among many other factors and it is not 
possible to establish a general formulation for all bearings. 

Another misconception related to bearing characteristic frequencies is that bearings are 
sometimes thought to produce harmonic sinusoidal components at such rates. This may stem 
from the fact that conventional bearing diagnosis systems are largely based on spectral 
analysis and consequently Fourier Transforms (FT) which represent signals with harmonic 
sinusoidal components. It should be clear from the previous paragraph that bearing 
frequencies are produced by striking of a defective point of a bearing component on other 
component. Such striking results in excitation (ringing) of the bearing assembly at its natural 
frequencies. The striking itself occurs at rates equal to the characteristic frequencies (easily 
computable) and creates impulses in the signal and not harmonic sinusoidal. The ringing 
effect, on the other hand, occurs at natural frequencies of the bearing components in the shape 
of a random stationary signal at normally higher frequencies (usually unknown). The 
combination of these two phenomena creates vibration with repetitive bursts of energy. To be 
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more accurate, vibration signals produced by a bearing defect are modulated signals; vibration 
energy at natural frequencies of the bearing (carrier frequency) is modulated with 
characteristic frequencies of the bearing (modulation frequency). Such signals in signal 
processing terminology are entitled cyclostationary. 

According to above discussion, typical spectral (FFT) analysis is not a strong tool for 
detecting bearing anomalies as it gives the averaged spectral representation (spectrum) based 
on stationary assumptions. In fact, spectral analysis is only capable of detecting bearing 
defects when they are greatly developed and in presence of little noise. In such cases the 
modulation frequency and its harmonics are visible on the spectrum. An alternative for typical 
spectral analysis is to use spectrogram (STFT) or any other joint time-frequency 
representation. In this case, the repetitive bursts of energy occurring at higher frequencies 
(ringing frequencies of the bearing component) are observable throughout the spectrogram. 
The duration between successive bursts is equal to the inverse of any one of the characteristic 
frequencies depending on the case. These methods are very representative and appropriate for 
analysis purposes. On the other hand, they are not suitable for an automated diagnosis system 
since it is difficult to establish a robust trending and alarming scheme. 

Envelope analysis [Darlow et al. 1974] is also one of the methods widely used for bearing 
fault detection. It consists in spectral analysis of the envelope of the time-domain signal. For 
envelope analysis to be effective it is usually necessary that sensors be located very close to 
the bearing so that the repetitive bursts of energy due to bearing faults are discernible in the 
time-domain signal. This limits its use for applications where the sensors are not mounted as 
such or where the vibration produced by other components mask the recurring pulses in the 
signals. One solution to this limitation is to band-pass filter the signal around some 
appropriate frequency band and then performs envelope analysis on the filtered signal. Again, 
selecting the appropriate band entails knowing the natural frequency of the bearing assembly 
a priori. 

One might think of performing envelope analysis on the signal narrow-band filtered around 
all frequencies of interest. This bears a similarity to taking STFT of the signal and then 
performing envelope analysis on each frequency bin over the range of interest. This concept 
sets the stage for what is covered in the following section under cyclic spectral analysis. 

Cyclic spectral analysis 

Given x(t) the signal in time, cyclic spectral analysis uses FT to scrutinize the alternation of 
the spectral contents of the signal at each frequency f throughout signal duration T. More 
accurately, if the narrow-band filtered constituent of the signal x(t) around frequency f is 
denoted as xf(t) then the FT of the square of this signal reads: 

 

  
where α is cyclic frequency (carrier frequency) as opposed to f the spectral frequency 
(modulation frequency). Since the representation obtained using this equation will actually 
reveal the modulation of the signal in terms of cyclic frequency, it is also called the cyclic 
modulation spectrum. The above formulation is straightforward and apt for understanding the 
concept. Nonetheless, deriving the discrete version of this formulation suitable for 
implementation is not as straightforward. An alternative approach to formulate the same 
concept is to use correlation approach, which leads to a more straightforward discrete 
formulation, yet harder to grasp. This approach is described as follows [Gardner 1986]: 
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According to the definition of cyclostationarity, the mean and the autocorrelation for a 
cyclostationary signal (or process in general) x(t) are periodic and the following equations 
hold: 

 
 

 
 

for any possible t, t1 and t2 and where T denotes the period. For notational simplicity Eq. 1 can 
be reformulated as:  

 
Now if the Fourier coefficients of the autocorrelation function for a range of frequencies (α) 
equal to integer multiples of the fundamental frequency (1/T) are written as: 

 
Then the Fourier expansion of the autocorrelation function reads:  

 

To generalize this notation, Eq. 5 must be revised so that it covers the whole range of possible 
frequencies. By letting T be any possible periodicity in the signal, an extension to Eq. 5 can be 
expressed as: 

 
According to above notation, the cyclostationarity of a signal x (t) will manifest itself as a 
nonzero Fourier coefficient. Similarly, a non-zero coefficient at any frequency α conveys that 
the signal exhibits cyclostationarity at that frequency. In its standard terminology frequency α 

is referred to as cyclic (or cycle) frequency and   as a cyclic autocorrelation function. 
The set of cyclic frequencies for which the cyclic autocorrelation function is non-zero is 
called the cyclic spectrum. In an analogy to spectral analysis where the spectral density is 
defined as the Fourier transform of the autocorrelation function, the cyclic spectral density is 
defined as: 

 
Finally, from Eq. (8) the discrete cyclic spectrum for a discrete signal x(k∆t) (for k=0, 1,2,…) 
is adapted as: 

 
where ∆t and K denote the sampling interval and number of samples respectively and the 
discrete autocorrelation function is obtained as:  
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EXPERIMENT 

As mentioned earlier, for a bearing detection method to be effective in applications related to 
complex machinery it must allow consistent trending and be able to detect defects from a 
weak signal. In this section cyclic spectral analysis is examined for these features using two 
sets of experiments. 

In principle, the transmission path mainly dissipates the energy of the signal but generally 
should not affect certain characteristics of the signal such as its cyclostationarity. For the 
transmission path to diminish the signal’s cyclostationarity it must operate as a rather 
complicated filter that evens out the repetitive bursts of energy that occur in a specific 
frequency range. Therefore, it is reasonable to expect that the cyclostationarity behaviour of 
the signal is preserved through the transmission path. In our first case study, this premise is 
tested experimentally by collecting the signals from a faulty bearing using an accelerometer 
positioned far from the bearing. 

In automated health monitoring and fault diagnosis, it is essential for a method to allow 
robust, attainable and consistent trending. As an example, cyclostationarity due to bearing 
anomalies can be detected with most time-frequency methods as long as the ringing 
frequencies or the natural frequencies of the bearing assembly are known to some extent. 
However, in the majority of cases the natural frequencies of the bearing assembly are not 
readily available. This limits the application of such methods in automated health monitoring. 
Another important point is that the feature being tracked must be consistent in the sense that 
its value bears some correspondence to severity of faults. In our second case study, 
cyclostationarity is examined for these requirements through a run-to-failure experiment. The 
description of these two case studies followed by discussion and the results for each case are 
represented in the following sections. 

First Case Study – Experiment Setup and Data Acquisition 

In the first case, vibration signals were collected from a test setup at École Polytechnique de 
Montréal consisting of a 2 HP motor driving a shaft supported by two different bearings. One 
bearing was an overhauled roller bearing (PWC15) from an aircraft engine provided by Pratt 
& Whitney Canada. The other bearing was a new SKF ball bearing. Each bearing was 
contained in housing and bolted to an adjustment base. The adjustment base was also bolted 
to a main stiff base which was fixed to the concrete floor. An accelerometer was mounted on 
each bearing housing along with two more on the main base (Figure 1). Signals were gathered 
at a sampling frequency of 50 kHz during operation of a shaft running at 1200 RPM (20 Hz). 
One of the accelerometers on the base was positioned about 4ft. away from the shaft 
assembly. Signals from this accelerometer were used for analyzing the effect of the 
transmission path on the cyclostationarity of the signals. 

 

Fig. 1: Test setup at École Polytechnique de Montreal 
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Results and Discussions for the First Test Case 

Visual inspection of PWC15 bearing indicated an outer race fault. The SKF bearing, on the 
other hand, was a new bearing. Figure 2 shows the cyclic spectrum or cyclic spectral density 
of the signals gathered by accelerometer no.3. This was obtained from a 1 sec portion of the 
signal. Two dominant peaks are clearly discernible at cyclic frequencies of 90 Hz and 180 Hz 
and for a range of spectral frequencies centred around 4 kHz. This indicates that the vibration 
energy around 4 kHz (the natural frequencies of the bearing assembly) is modulated with a 
modulation frequency of 90 Hz. This modulation frequency coincides well with the over-
rolling frequency of one point of the outer race of the PWC15 bearing given in Table 2. 

 

Table 2: Characteristic frequencies of the bearings used in the experiments 

Description                                                                                           PWC15      Rexnord 

Rotational frequency of rolling element assembly [Hz]              fc        7.73            14.8 

Rotational frequency of a rolling element [Hz]                           fr        41.7            140 

Over-rolling frequency of one point on inner ring [Hz]              fip       147              297 

Over-rolling frequency of one point on outer ring [Hz]              fep       92.7            236  

Over-rolling frequency of one point on rolling element [Hz]     frp       83.5            280        

 

 

Fig. 2: Cyclic spectral density of the faulty PWC15 bearing 
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Fig. 3: Low frequency range spectrogram and spectrum of the faulty PWC15 bearing 

To compare this method over typical methods, the spectrum and spectrogram of the signals up 
to 250 Hz are shown in Figure 3 along with the corresponding time-domain signal. As is 
typical with spectral analysis for the purpose of bearing fault detection, it is expected to have 
a peak at around 92 Hz on both diagrams. The spectrum in this case shows a minuscule peak 
around 95Hz. Slightly higher spectral energy can also be observed from the spectrogram 
around the same frequency. Such low amplitude indications would be completely masked in 
presence of noise. Moreover, as mentioned earlier the bearing used in this experiment was an 
overhauled bearing with a predominantly developed outer race fault. 

According to the discussion in Section 2, in order for the vibration produced by faulty 
bearings to be clearly discernible on the spectrogram one needs to look at a broader frequency 
range. Figure 4 shows the spectrogram and spectrum of signal up to 12.5 kHz. On the 
spectrogram, the outer race fault manifests itself as a series of bursts taking place at around 
3.5 kHz (the natural frequencies of bearing assembly or carrier frequencies) with an interval 
equal to the inverse of the outer race fault characteristic frequency (modulation frequency). 
These results suggest that for this approach to be effective in automated monitoring, prior 
knowledge of the natural frequencies of bearing assembly is required. Moreover, it is 
necessary that other machine components do not produce vibration within the same frequency 
band and jumble the signal. This is definitely not the case for complex systems with many 
components producing vibration. 
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Fig. 4: Wide range frequency spectrogram and spectrum of the faulty PWC15 bearing 

 

Second Case Study – Experiment Setup and Data Acquisition 

In order to investigate if the cyclic spectral density enables consistent trending, a bearing data 
set from a run-to-failure test provided by the Center for Intelligent Maintenance Systems 
(IMS) of University of Cincinnati through NASA Ames Prognostics Data Repository [Lee et 
al. 2007] was used. 

Results and Discussions for the Second Test Case 

In this test four double row Rexnord ZA-2115 bearings were mounted on a shaft driven by an 
AC motor (Figure 5). Vibration data was gathered using four accelerometers, one on each 
bearing housing, at a sampling rate of 20 KHz. A spring mechanism exerted a radial load of 
6000lbs on the rotating shaft and the bearing. Data snippets of approximately 1 second in 
duration were gathered at 10-minute intervals throughout a run-to-failure test. In this study, 
around 50 snippets were selected over a 190 min interval covering the progress of bearing 
from healthy to faulty. At the end of this test, an outer race fault on the third bearing was 
observed. 
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Fig. 5: Schema of the test rig at IMS, of University of Cincinnati (by courtesy of [Lee 
et al. 2007]) 

According to Table 1, due to a fault on the outer race of the third bearing, it is expected that 
the signal exhibit degrees of cyclostationarity at a cyclic frequency of 236 Hz as the fault 
progresses. Figure 6 shows the cyclic spectrum of the signals gathered by accelerometer 3 on 
the third bearing when the outer race fault is developed. As shown, the vibration energy 
distributed around 4.5 kHz is modulated with a frequency of about 230 Hz which slightly 
deviates from the calculated characteristic frequency for an outer race. This deviation has 
been reported in [Qiu et al. 2006] as well. 

 

In order to analyse the correspondence between the cyclic spectral energy and the progress of 
the bearing defect, the overall narrow-band (5 Hz) cyclic spectral energy around the bearing’s 
outer race frequency (231 Hz) is studied. Figure 7 shows the variation of the magnitude of 
vibration energy values with respect to operation time. According to this graph, first 
indications of bearing fault appear after 92 hours of operation. Comparing this to the 
bearing’s total service life in number of hours (i.e., 165 hours) this can indeed be considered 
an early indication. After this early indication, the value of the cyclic energy goes through a 
number of significant fluctuations, which can be due to healing phenomenon [Williams et al. 
2001]. This indicates that strict connections cannot be established between cyclic energy and 
the severity of fault. Nevertheless, it remains a significant distance from the initial value 
observed for normal conditions during early hours of operation. 
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Fig. 6: Cyclic spectral density of faulty Rexnord bearing 

 

 

Fig. 7: Progress of banded cyclic spectral density 

 

This experiment demonstrates that cyclic spectral analysis should not be used as a tool to 
measure the severity of bearing faults. On the other hand, it can be utilized as a reliable 
monitoring tool because its value always reads higher for a faulty bearing than for a normal 
one; and also it enables early detection of bearing faults. 
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CONCLUSIONS 

In this study the problem of bearing fault detection in complex machinery was revisited. Two 
prerequisites for a method to be effective in detecting bearing faults in complex systems were 
identified to be the capability of detecting bearing faults from a faint signal; and a consistent 
trending feature. Relevant shortcomings of traditional approaches were discussed. Cyclic 
spectral density was then argued to be an appropriate candidate that could overcome 
difficulties with traditional approaches and meet the prerequisites. This was examined through 
two sets of experiments. In conclusion, the experimental results were satisfactory. As a 
recommendation for future work, the effectiveness of this method can be further investigated 
with signals obtained from other test cases as well as a real industrial case. 
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