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ABSTRACT 

The uncertainty propagation of composite structures is investigated in this work considering 
descriptive statistical measures of the response variability and sensitivity analysis of system 
responses inside inverse reliability-based design optimization (RBDO) framework. A study 
based on sensitivity to uncertainty that allows selecting the important parameters using global 
sensitivity indices is presented. The uncertainty propagation and the importance measure of 
input parameters are analysed using an Artificial Neural Network-based Monte Carlo 
simulation approach (ANN-MCS). The proposed methodology uses the optimal loading 
conditions obtained solving the inverse RBDO problem. 
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INTRODUCTION 

Although several methods have been presented for uncertainty assessment, their efficiency 
was not proven, in particular when applied to composite structures. The almost totality of 
sensitivity analyses in applications with composite structures used local importance measures 
of design parameters. In particular Rais-Rohani and Singh (2004) and Carbillet et al. (2009) 
studied the sensitivity of reliability index of composite structures with non-linear behaviour 
and quantified the importance of the random variables using local measures. Although the 
merit of the proposed approaches Global Sensitivity Analysis (GSA) on the uncertainty 
response is still unexplored and remains an open issue. So, the uncertainty propagation of 
composite structures is investigated in this work considering descriptive statistical measures 
of the system response variability inside GSA framework. In particular, this is implemented 
using the optimal loading conditions obtained from inverse reliability-based design 
optimization (RBDO). 

 

UNCERTAINTY PROPAGATION ANALYSIS  

The objective of the proposed approach is to study the propagation of uncertainties in input 
random variables, such as mechanical properties, on the response of composite laminate 
structures for a specified reliability level. Fig. 1 shows the proposed Artificial Neural 
Network based Monte Carlo simulation procedure (Conceição António and Hoffbauer, 2013).  
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Fig 1: Flowchart of proposed approach for uncertainty propagation analysis 

 
For a target reliability index aβ , the inverse problem can formulated as follows: 
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where sβ , is the structural reliability index, ππππµµµµ  is the realization of random variable ππππ . The 

mean values,iπ , of mechanical properties of composite laminates are considered for ππππµµµµ . The 

design variables are the ply angle, a, and load factor, λ . The vector of applied loads is defined 

as refLL λ==== , where refL  is the reference load vector and after solution of the problem in 
equation (1) the corresponding maximum load is computed for each value of ply angle a. This 
is a conventional RBDO inverse optimization problem. To solve the inverse problem (1), a 
decomposition of the problem is considered. The Hasofer-Lind method and appropriate 
iterative scheme based on a gradient method are applied to evaluate the structural reliability 
index, sβ , in the inner loop (Conceição António, 1995). From the operational point of view, 

the reliability problem can be formulated as the constrained optimization problem 

( ) 21 
 )(Minimize

/T vvv
v
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where v is the vector of the standard normal variables, β  is the reliability index and )(vϕ  is 
the limit state function.  

The limit state function that separates the design space into failure ( 0)( <<<<ππππϕ ) and safe 
regions ( 0)( >>>>ππππϕ ) can be written as 

 1)( −−−−====ππππ Rϕ  (3) 
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where R  is the critical Tsai number, defined as 

 )( 1 sNk R...,,R...,,RMinR ====  (4) 

and sN  the total number of points where the stress vector is evaluated. The Tsai number, kR , 

which is a strength/stress ratio (Tsai, 1987), is obtained from the Tsai-Wu interactive 
quadratic failure criterion and calculated at the k-th point of the structure solving equation 

 (((( )))) (((( )))) 01 2 ====++++−−−− kiikjiij RsFRssF  (5) 

where is  are the components of the stress vector, and ijF  and iF  are the strength parameters 

associated with unidirectional reinforced laminate defined from the macro-mechanical point 
of view (Tsai, 1987). The solution of the reliability problem in equation (2) is referred to, in 
technical literature, as the design point or most probable failure point (MPP). The bisection 
method used to estimate the load factor, λ , is iteratively used in the external loop (Conceição 
António and Hoffbauer, 2009, 2013). 

The proposed ANN is organized into three layers of nodes (neurons): input, hidden and output 
layers. The linkages between input and hidden nodes and between hidden and output nodes 
are denoted by synapses. These are weighted connections that establish the relationship 
between input data and output data.  

In the proposed ANN-MC approach, each set of input values for the random variable vector 
ππππ  is selected using the Uniform Design Method (UDM) (Fang and Wang, 1996). The 

procedure is based on a UDM table denoted by )( s
n qU , where U is the uniform design, n the 

number of samples, q the number of levels of each input variable, and s the maximum number 
of columns of the table. For each UDM table, there is a corresponding accessory table, which 
includes a recommendation of columns with minimum discrepancy for a given number of 
input variables. Using the UDM a set of design points belonging to the interval 
[[[[ ]]]]iiii , παππαπ ++++−−−−  is generated, covering a domain centred at mean reference values of 

the random variables. This method enables a uniform exploration of the domain values 
necessary in the development of an ANN approximation model guarantying better results 
after learning procedure (Cheng and Xiao, 2008). The corresponding output data vector 
contains the critical Tsai number, R , structural reliability index, sβ , and relative sensitivities 

i
Sπ  of reliability index with respect to random variables. The concept of relative sensitivity 

(Cacuci, 2003) of the reliability index is defined as 
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and its analysis aims to compare the relative importance of input parameters on the response. 
Fig. 2 shows the topology of the ANN, showing the input and output parameters. 

The adopted supervised learning process of the ANN based on a Genetic Algorithm (GA) 
(Conceição António, 2001) uses the weights of synapses and biases of neural nodes at the 
hidden and output layers as design variables. A binary code format is used for these variables. 
The number of digits of each variable can be different depending on the connection between 
the input-hidden layers or hidden-output layers. A GA is an optimization technique based on 
the survival of the fittest and natural selection theory proposed by Charles Darwin. The 
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genetic algorithm (Conceição António, 2001) basically performs on three parts: (1) coding 
and decoding random variables into strings; (2) evaluating the fitness of each solution string; 
and (3) applying genetic operators to generate the next generation of solution strings in a new 
population. 
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Fig. 2: Artificial Neural Network topology 

 

Three basic genetic operators, namely selection, crossover, and mutation are used in this 
paper. An elitist strategy based on conservation of the best-fit transfers the best-fitted solution 
into a new population for the next generation. Once the new population is created, the search 
process performed by the three genetic operators is repeated and the process continues until 
the average fitness of the elite group of the current generation no longer shows significant 
improvement over the previous generation. Further details on creating and using a genetic 
algorithm for ANN learning can be found in the reference (Conceição António, 2001). 

 
GLOBAL SENSITIVITY ANALYSIS 

The local measures of sensitivity are not enough for a full evaluation of the influence of input 
parameters on structural response uncertainty (Conceição António and Hoffbauer, 2008). The 
uncertainty analysis on response in the neighbourhood of mean values of input parameters is 
of limited value. To obtain the influence of individual parameters on the uncertainty at the 
output structural response mΨ  Global Sensitivity Analysis (GSA) techniques must be used. 

Global Sensitivity Analysis denotes the set of methods that consider the whole variation range 
of inputs and tries to share the output response uncertainty among the input parameters.  

Assuming that )( 1 nX...,,X====X  are n independent input parameters and mΨ  is the 

performance function of structural response previously defined, an indicator of the importance 
of an input parameter iX  is the following normalized index  
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named first-order sensitivity index proposed by Sobol (2001). In equation (6) 
)( 〉〉〉〉〈〈〈〈 im X|Εvar Ψ  is the variance of the conditional expectation and )( mvar Ψ  is the variance 

of mΨ . Furthermore, Sobol (2001) proposed a complete variance decomposition of the 
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uncertainty associated with mΨ  into components depending on individual parameters and 

interactions between individual parameters. This procedure explains the variance )( mvar Ψ  as 

a contribution of the partial variance associated to each individual parameter. From this 
decomposition higher order sensitivity indices can be established in particular the second 
order sensitivity index. The second order index ijS  defines the sensitivity of the structural 

response mΨ  to the interaction between iX  and jX , i.e. the portion of the variance of mΨ  

that is not included in the individual effects of iX  and jX . The sum of all order indices is 

equal to 1 in case all input parameters are independent.  

Since higher order sensitivity indices require tedious calculations only the Sobol first-order 
sensitivity index is used in the presented work. One of the problems using global sensitivity 
indices is the computational cost. Due to the large number of input parameters in the 
uncertainty propagation analysis on composite structures, Finite Element Method evaluations 
become very expensive. In this work the ANN-based Monte Carlo simulation approach is 
used for the estimation of GSA indices. To reduce the computational costs the analysis is 
implemented using groups of input parameters and considering only the Sobol first-order 
sensitivity index. The proposed methodology is based on the algorithm described in 
(Conceição António and Hoffbauer, 2008, 2013). 

 

RESULTS 

Let’s consider an aircraft wing-like composite panel as shown in Fig. 3. The panel thickness 
is equal to 0.015 m. The structure is clamped along linear side (AB) and free along opposite 
side. One vertical load with perpendicular direction relatively to OXY plan is applied on point 
C. The structure is built by one laminate made of a carbon/epoxy composite system as 
presented in Table 1. A balanced angle-ply laminate with eight layers and stacking sequence 
[ ]saa º54/º54// −+−+  is considered in a symmetric construction. Ply angle a, is referenced 

to the x-axis of the reference coordinate, as detailed in Fig. 3. All plies have same thickness. 
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Fig. 3: Geometric definition of aircraft wing-like composite panel 

 

A shell finite element is used for structural analysis. To assess reliability the previously 
described procedure in equations (2) to (5) is applied considering the vector of random 
variables ],[= 21 SY,E,Eπ . 
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Table 1 Mean reference values of mechanical properties of composite layers 

Material 1E   [GPa] 2E  [GPa] 12G  [GPa] ν 

T300/N5208 181.0 10.3 7.17 0.28 

 X ; X’  [MPa] Y ; Y’  [MPa] S  [MPa] ρ   [kg/m3] 

T300/N5208 1500 ; 1500 40 ; 246 68 1600 

 

The target reliability index is 3=βa  and the coefficient of variation of each random variable 

is set to %CV 6)( =ππππ , relatively to the mean values presented in Table 1. The corresponding 
maximum load is plotted in Fig. 4 and it is used as the reference load for further development 
of the ANN supported by UDM and GA-based learning procedure. 
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Fig. 4: Maximum load for 3====aβ , solving the inverse RBDO problem for aircraft wing-

like composite panel. 
 
The ANN is developed using UDM points. After obtaining the new optimal ANN for aircraft 
wing-like composite panel, the uncertainty propagation analysis is performed. A set of 
random numbers, 50=fN , following a normal distribution ( ) 1 0,N  and a sample matrix 

αM  with dimension 3100)1( ×=−× pNr  are used in GSA algorithm for a total of twenty 

thousand simulations. The GSA is implemented and the Sobol first-order sensitivity index iS  

is calculated as a function of ply angle, a. Fig. 5 and Fig. 6 show the contribution of each 
random variable for global variance )( mvar Ψ  using two responses functions of the composite 

structure. The Sobol first-order sensitivity index (Sobol, 2001). is used as importance measure 
and the contribution is represented as a fraction of the total values at each ply angle. Fig. 5 
plots the results for structural response analysis based on critical Tsai number R . Similar 
analysis is performed using the reliability index sβ  as response functional of the structure and 
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plotted in Fig. 6. The most important random variable in global variance explanation of R  is 
the transversal strength Y  for whole domain of ply angle as shown in Fig. 5. Also the shear 
strength S is important in interval [15º, 45º]. The longitudinal elastic modulus  1E  has 

relevant importance in interval [45º, 75º] and the elastic transversal modulus  2E  is important 
for whole domain of ply angle a, except for 75º. 

 
Fig. 5: Global variance )(Rvar , explained by Sobol first-order sensitivity index iS  for 

input parameters ],21[= SY,E,Eπ , aircraft wing-like composite panel. 

 

 

Fig. 6: Global variance )s(βvar , explained by Sobol first-order sensitivity index iS  for input 

parameters ],21[= SY,E,Eπ , aircraft wing-like composite panel. 
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Analysing the results plotted in Fig. 6 it can be concluded that the most important random 
variable to explain global variance )s(βvar  is the transversal strength Y  except for ply angle 

a equal to 30º where the shear strength S  is the most important. Furthermore, the shear 
strength has important contribution to explain )s(βvar  in the interval [15º, 45º]. The balanced 

contribution of the four random variables ],[= 21 SY,E,Eπ  for ply angle a equal to 45º is 
another relevant observation. 

The global variance of critical Tsai number R  and of the reliability index sβ  can be 

explained by Sobol indices in different manner when the ply angle [ ]º45º15 ,a∈ . Since R  is 

associated to a deterministic analysis and sβ  is associated to a probabilistic analysis of failure 

a different behaviour in uncertainty propagation was expected.  

 

CONCLUSIONS 

A study of the anisotropy influence on uncertainties propagation of composites is carried out 
based on the proposed methodologies. The study proves that the variability of the structural 
response as a function of uncertainty of the mean values can be very high. This high 
variability is also corroborated by evaluated relative sensitivity measures. These aspects must 
be considered for robust design since high structural response variability may induce a drastic 
reduction in the quality of the optimal design solutions for composite structures. Based on the 
numerical results, the importance of measuring input parameters on structural response are 
established and discussed as a function of the anisotropy of composite materials. Some 
difference was found depending on a deterministic or a probabilistic analysis of structural 
failure. The uncertainty analysis propagation is very useful in designing laminated composite 
structures minimizing the unavoidable effects of input parameter uncertainties on structural 
reliability 
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