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ABSTRACT 

An approach for optimal design of composite structures aiming minimum weight subject to 
allowable reliability level under dynamic loading conditions is proposed. The failure 
probability is obtained using a procedure based on level 2 reliability analyses adapted for 
dynamic response. Material properties of the ply are considered normal random variables. The 
optimization process is based on co-evolutionary Genetic Algorithm where a master 
population evolves together with a net of slave sub-populations. Shredding Genetic Algorithm 
is used at slave populations aiming to obtain the long-term survival probability of composite 
structures. The master population evolves searching the minimum weight of structures. 

Keywords: dynamic, composites, reliability, optimization, genetic algorithm, co-evolution. 

 

INTRODUCTION 

The need to incorporating uncertainties in engineering design has been recognized in previous 
research (Chiachio et al. 2011). Furthermore, the reliability based optimal design under 
dynamic response is an emerging research area due to the difficulties associated with coupling 
optimization and reliability analysis in long-term survival. In the present work it is intended to 
develop a new model of optimization based on a probabilistic analysis of composite structures 
under dynamic loading conditions. 

The reliability based optimal design under dynamic response is an emerging research area due 
to the difficulties associated with coupling optimization and reliability analysis (Conceição 
António, 2000; Kvedaras et al., 2009). In the present work it is intended to develop a simple 
model of optimization based on probabilistic analysis of composite structures under dynamic 
loading conditions. 

 

PROBABILISTIC DYNAMIC RESPONSE 

Let us consider ) ...,  ( n21 πππ ,,====ππππ  as the non-correlated basic random variables vector of 
the structural problem for the reliability analysis of composite structures under dynamic 
response. The random variables are related with uncertainties in the material properties 
including random laminate fibre orientation, modulus of elasticity, Poisson's ratio and 
thickness. Mean values and variances characterize the statistical nature of these variables. 

Following a discretized form of the probabilistic dynamic equilibrium equation based on the 
finite element formulation of an isoparametric degenerated shell element, the displacements, 
velocities and accelerations, d , d&  and d&&  respectively, can be defined in terms of nodal 
variables as 
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[[[[ ]]]] fπdππdpπdπCπdπMπd TT , )())(()()()()()( δδ ====++++++++ &&&               (1) 

where the mass matrix M , the damping matrix C, the internal force )(dp  and the external 
applied load vector  f  have the following element contributions 
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being eS  and eV  the surface and the volume of the element under consideration, ρ  and  c  

are the mass density and the damping parameter respectively, B is the standard strain matrix, 
N is the matrix of shape functions and σσσσ  is the vector of stresses referred to the local 
coordinates. In Equation (2), t is the vector of surface tractions applied on the boundary 
surface eS . Since the virtual displacement dδ  may be arbitrary, Equation (2) is written as 

fdpdCdM ====ππππππππ++++ππππππππ++++ππππππππ ))(()()()()( ,&&&                                   (3) 

For linear elastic problems, the stresses are related to the strains as follows 

)()()()()()( ππππππππππππ====ππππεεεεππππ====ππππσσσσ dBDD                                        (4) 

and the internal forces can be written as 

)()())(( ππππππππ====ππππππππ dKdp ,                                                 (5) 

where the structural stiffness matrix K  results from the contribution of the stiffness of the 
element  e, 
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In the present work a consistent mass matrix is considered and Newmark's algorithm together 
with the predictor-corrector scheme (Hughes and Liu, 1978) is adopted to solve the Equation 
(3). 

 

RELIABILITY OF COMPOSITES UNDER DYNAMIC LOADING 

Limit state functions 

The vectors of random displacements and random stresses obtained in the previous section 
can be incorporated into the first order reliability method (FORM) to derive the safety index 
and then the probability of structural failure. In this work, reliability is the probability of the 
structures not failing within a specified time interval. Thus it is necessary to define failure 
criteria. It will be assumed that the structure fails if the maximum displacement, strain or 
stress exceeds some specified values. The most critical limit state function of displacement is 
related to the nodal displacement id  at the most critical point exceeding an allowable value 

ad , within a specified time interval [[[[ ]]]]mt,0  (Melchers, 1999): 
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[[[[ ]]]]mjim t...,,j,;t,dMAXt,d 1N ..., 1,=i      )()( d ====ππππ====ππππ                       (7) 

)()(1 mam t,ddt, ππππ−−−−====ππππϕ                                               (8) 

being dN  the number of prescribed nodal displacements. This active strategy is based on the 

assumption that the displacement field of the shell structures can be represented by the most 
critical value of the structure. 

The second limit state function is established considering the stresses at the ply level. The 
failure criterion employed for anisotropic materials is a generalised form of the Huber-Mises 
law (Conceição António, 2001) and can be written as 
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where Y is the maximum allowable level stress, sN  is the number of points where the stress 

vector is calculated and ),( jk tf σσσσ  is a failure function evaluated at the k-th point and at time 

jt . This failure function is defined in terms of the stresses referred to the material axes 1,2,3 

as 
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being A the matrix of the anisotropic strength parameters determined by six independent 
failure tests. If the material axes 1,2 are rotated by a given angle θ relatively to the reference 
axes x,y, then the transformation of both stresses and matrix A to the global axes is necessary. 
So, the obtained yield criterion can be rewritten as 

σσσσσσσσ====σσσσσσσσ====        )(2 ATAT TTT
jk t,f σσσσ                                   (11) 

where T is the strain transformation matrix which relates the material system (1,2,3) with the 
global system (x, y, z). The first ply failure at time jt  occurs for 
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and the second limit state function can be written as 

(((( ))))mjn , ..., tjthMINt, FPF 1    ,    )()( ========ππππ2ϕ                         (13) 

Reliability analysis 

Since the boundary of the safety region, called limit state surface, is given by 

0=)(= 21 mnp t,, ...,π, ππz ϕ                                                (14) 

the values of ππππ  belonging to the failure region will satisfy the following inequality: 

0<)(= mp t,z ππππϕ                                                        (15) 
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The probability of failure is defined as 

[[[[ ]]]] ∫∫∫∫ ππππππππ<<<<ππππ
Ω

ϕ dt,ft,PP mmpf  )(=0)(=                           (16) 

where )(ππππf  is the joint probability density function of π , Ω  is the failure region, and  

)(ππππpϕ  is the so-called limit state function which separates the design space into failure 

( 0)( <<<<ππππpϕ ) and safe ( 0)( >>>>ππππpϕ ) regions.  

The distribution of the considered basic variables iπ  and the considered limit state surface 

)(ππππpϕ  are known and the probability of failure can be used as a measure of reliability. 

However, equation (16) cannot be evaluated analytically for realistic structures because the 
calculation of the integral is difficult. To avoid this feature the moment reliability theory 
namely the so-called Hasofer-Lind reliability index (Melchers, 1999) is used in this work. The 
advantage of this method is its invariance with respect to different failure surface 
formulations for spaces having the same dimension.  

The Hasofer-Lind method performs in two steps: the first one consists of projecting the failure 
surface of equation (14) into the space of standardised variables: 

i
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                                                     (17) 

where iπ  and 
iπσ  are, respectively, the mean values and the standard deviations of the basic 

variables, and the second step measures, in this space, the minimum distance β  of the 
transformed surface 

0=)...,  ( n21 mp t,u,u,uϕ                                            (18) 

to the origin of the axes. A design is considered reliable at aβ  level prescribed by an 

appropriated provision code, if aββ ≥≥≥≥ . The geometric interpretation of this feature can be 

presented in the following manner: the hypersphere having radius aβ , with its centre at the 

origin of the axes iu  (corresponding to the mean values of the variables iπ ), is required to lie 

entirely in the transformed safety domain. On the other hand, considering that in the standard 
normal space the probability density decays exponentially with distance to the origin then the 
point with maximum probability of failure on the limit-state surface is the point of minimum 
distance to the origin. From the operational point of view the search for this point can be 
formulated as a constrained optimisation problem 
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where u is the vector of the standardised variables defined in Equation (17) and the respective 

solution *u  is referred in the technical literature as the design point or even as the Most 
Probable failure Point (MPP). 
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The assumption of the minimum distance β  obtained from the solution of Equation (19) as a 
measure of reliability is equivalent to considering the discretization at one point only of the 
safety domain boundary, expressed in the space of the standardised variables. This 
corresponds to the substitution of the hypersurface by the hyperplane passing through the 

point defined by *u . Introducing formally a normal probability distribution function Φ , the 
first-order approximation of p,fP  can be written as 

)( pp,fP βΦ −−−−====                                                        (20) 

where pβ  is known as the safety index, i.e. the minimum distance from the origin to the 

limit-state surface )( mp t,uϕ . 

Finally, the reliability of the structural system under dynamic load conditions is established as 

)( disps ,MIN FPF βββ ====                                              (21) 

being dispβ  the reliability index associated with the critical displacement limit state 

established in Equation (8) and FPFβ  is the reliability index associated with the first ply 
failure limit state function defined in Equation (13), both of them defined for a specified time 
interval mt . 

 

GLOBAL MOST PROBABLE POINT SEARCH 

A very important problem in structural reliability analysis of composites is the existence of 
multiple most probable failure points (MPPs) or failure points of the limit state functions 
when the optimization problem formulated in Equation (19) is solved. Multiple MPPs are 
similar to the local minima in structural optimization.  

Many problems in structural optimization are stopped once a local minimum is reached. This 
is an unacceptable procedure in reliability analysis since the local MPP may not represent the 
worst failure and the actual failure may occur below the predicted level. Only the global MPP 
represents the actual structural reliability. In some optimisation algorithms the problem of 
multiple local minima is addressed by checking if all solutions starting from different initial 
points converge to the same optimum. This method is very costly from the computational 
point of view and no additional information is done if the problem has or does not have 
multiples MPPs (Wang and Grandhi, 1995). In this work a methodology based on genetic 
search aiming the identification of the global MPP (Conceição António, 2000) is proposed. 
The adopted evolutionary strategy is elitist since a core of genetic material of individuals 
(solutions) with best fitness is considered while the diversity of the rest of the population is 
guaranteed. This aspect is important for global most probable point search. 

An important aspect of the evolutionary search is the definition of the fitness of individuals, 
which is related with the objective function and the constraints of the problem. The original 
minimisation problem is transformed. The genetic algorithms will seek to increase the fitness 
as it operates and so the constrained minimization problem formulated in Equation (19) is 
transformed as 
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where C  is a constant large enough to avoid negative fitness. Designs with good fitness and 
satisfying the constraint have priority in the selection process. Solutions of the problem that 
violate the constraint are penalized at a graded degree of severity according the difference 
between the actual and the allowable values of the constraint. Then the fitness function for the 
optimization problem in Equation (22) is written as 

q
mpmpp t,Kt,CFit )()( uu ϕβ −−−−−−−−====                                (23) 

being the constants q and K  evaluated considering two constraint violation degrees. A 
negligible penalty op  is applied to the constraint violation o,pϕ  that can be tolerated. Very 

high values 1,pϕ  of constraint violation are strongly penalized with a penalty 1p . Using 

penalties the constants q and K  are obtained in the following manner: 
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The magnitude of the penalties is related to the magnitude of pβ  rather than to the constant 

C , a value that is to some extent arbitrary. 

 

RELIABILITY BASED DESIGN OPTIMIZATION 

An optimization process based on exploitation of anisotropy of composite materials is 
proposed aiming the best performance of structural behaviour and minimum weight. The 
optimization problem is formulated as 

Minimize )(xW  , subject to ams t, ββ ≥≥≥≥)(x  

with  [[[[ ]]]])()()( mdispmms t,,t,MINt, FPF xxx βββ ====                               (26) 

where x denotes the design variables of the laminated composite materials of the structure, 
being aβ  the allowable reliability index for structural system, dispβ  the reliability index 

associated with the critical displacement limit state function and FPFβ  is the reliability index 
associated with the first ply failure limit state function, both of them defined for a specified 
time interval mt  of dynamic loading conditions. In order to obtain structural system reliability 

index it is necessary to implement the global MPP search. In the proposed approach this 
search represents the inner optimization problem using the random variables π  considered in 
uncertainty propagation analysis. The optimal design aiming the imposed structural reliability 
level together the weight minimization is defined as the external problem. This last 

optimization problem is performed using the design variables x  based on mean values π  of 
the random variables. 

The optimization problem formulated in equation (26) can be solved considering the ply 

angles iθ  and ply thicknesses it  of shell laminates. In order to improve the efficiency of the 

search a decomposition of the original optimization problem in (26) is implemented in the 
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proposed approach. The decomposition is based in two levels: in the first one the ply angle iθ  

are the design variables considering the objective to improve the performance of structural 

behaviour, in the second level the weight is minimized based on ply thickness it . Then the 
optimisation problem is  

First level: 

Maximise [[[[ ]]]])()()( θθθ dispFPFs ,MIN βββ ====      over θ                 (27) 

where θ  denotes the vector of the ply angles of the laminate composite materials of the 
structure. 

Second level: 

Minimize ),( πtW  , subject to ams t, ββ ≥≥≥≥)(t         over t                 (28) 

being t  denotes the vector of the ply thicknesses of the laminate composite materials. 

In order to obtain every reliability index it is necessary to implement the global MPP search at 
each optimization level solving the problem formulated in Equation (22). In the proposed 
approach this represents the inner optimisation problem. The optimal design aiming the 
weight minimization is defined as the external problem.  

Thus a co-evolutionary Genetic Algorithm (Conceição António, 2001, 2006) is proposed 

where two kinds of populations are identified: a master population denoted by tP  and a net of 
n small size sub-populations denoted by 

pSV  as shown in Figure 1. The master population 

performs the evolutionary process associated with the external optimization problem of 
minimum weight while the sub-populations evolve linked to MPP search inner problems. A 
Shredding Genetic Algorithm (Conceição António, 2001; Deng et al., 2005) is used to solve 
these inner problems. In the proposed approach the uniform design method is used to 
approximate the sampling space aiming to accelerate the MPP search. 

Each chromosome has two segments activated in alternative way when the evolutionary 
process passes from the master population to the slave sub-populations 

pSV . In both cases a 

binary code format is used to manipulate the exchange data. 

The Shredding Genetic Algorithm and the Genetic Algorithm applied to the master population 
are based on four principal operators: selection, crossover, implicit mutation and replacement 
of similar individuals. These operators are supported by an elitist strategy that always 
preserves a core of best individuals of the population that is transferred into the next 
generations. In the crossover process, the two progenitors are selected randomly: one belongs 
to the population group with best fitness (elite) and the second one is selected from the 
remaining group with lower fitness. Then the structured stochastic exchange data based on a 
multi-point combination technique called Parametrized Uniform Crossover (Spears and 
DeJong 1991) is applied to the binary string of the selected chromosomes. This crossover 
performs with a probability of choice for genes from the chromosome with best fitness. The 
offspring group will take part of the population into the next generation that will be formed by 
the crossover operator.  
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Fig.1 Morphology and linkage of the populations for co-evolutionary Genetic Algorithm 

 
To avoid the rising of local minima a chromosome set which genes are generated randomly is 
introduced into the population. This operation is called mutation and is quite different from 
classic techniques where a reduced number of genes is changed. The mutation operator 
guarantees the diversity of the population in each generation (Conceição António, 2001, 
2006).  

To control the genetic diversity, a scheme that detects individuals belonging to the same 
neighbourhood has been implemented. The analysis is made from the genetic point of view. 
The best individual is kept in the population and others generated randomly replace the 
similar ones. 

The co-evolutionary Genetic Algorithm performs as follows: 

1. For t=0, random generation of the initial master population 0P , considering the mean 
values ππππ  of the random variables; 

2. For slave sub-populations,  
Do p=1  to  n, 

2.1 Random generation of the initial sub-population 
pSV  with small size and 

considering the tpx  values of the design variables; 

2.2 Evolution of the 
pSV  sub-population over p,kππππ  using the Shredding Genetic 

Algorithm ⇒⇒⇒⇒  MPP search for each limit state function; 

2.3 Definition of the structural reliability index for the design solution tpx . 

end do 
3. Check the convergence criterion on the evolutionary process of the master population. 

If the evolutionary process converges stop, otherwise continue; 

4. Evolution of the master population tP  over the design vector tpx  using the mean 

values ππππ  of the random variables. The evolutionary process is based on: 
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Selection using an elitist strategy;  
Crossover based on the Parametrized Uniform Crossover;  
Implicit Mutation for diversity increasing; 
Replacement of individuals: to control genetic diversity. 
5. Do 1++++→→→→ tt , 

Transfer the elite group of tP , the offspring and the mutation group into the next 

generation ⇒⇒⇒⇒  creation of the master population 1++++tP ; 
6. Go to Step 2. 

In the proposed approach sampling space reduction variance techniques together with weak 
convergence conditions are used to accelerate the MPP search. 

 

NUMERICAL RESULTS 

A deep thin spherical shell is adopted as an example for reliability based design under 
dynamic response. The cap with a central angle of 120°, radius of 0.508 m and thickness of 

m1067 3−−−−××××.  is clamped on its boundary. 

 
Fig. 2 Shallow spherical shell subjected to a suddenly applied uniform pressure 

 
The shell is made of a symmetric laminate with 6 layers having the same thickness. The 

random variables iπ  considered in the numerical example are the longitudinal modulus 1E  of 

the ply material. The three random variables are not correlated and have normal distribution 

functions. The mean values are 321GPa9206 ,,i,.Exi ============π  and the standard deviations 

are 3 1,2,i   ,    060 ======== i.
i

πσ π . The mass density of the cap is 33 m10263 −−−−×××× kg.  and the 

composite material has the following properties: 
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A suddenly applied pressure load of MPa1384.  is applied on the shell. The imposed service 
condition is based on the absolute value of the maximum allowable vertical displacement 

mm 1098 1−−−−××××==== .da  within a specified time interval s1006 4−−−−××××==== .tm . A binary code format 

with five digits is used for the chromosome codification of each random and design variable. 
The master population has twelve individuals and the slave sub-populations evolve with ten 
individuals. The elite, offspring and mutation groups of all populations have equal sizes. 
Figure 3 shows the evolution history of the MPP search associated with the best-fitted 
individual for two generations of the reliability maximisation problem. The efficiency and the 
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robustness of the MPP search are evident in both cases. In particular the absolute value of the 
displacement limit state (l.s.) function is close to zero at MPP. 
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a)                                                                                     b) 

Fig. 3 Inner reliability index calculation for the best solution at: 
a) 1st generation and  b) 19th generation of the reliability maximisation scheme 

 

For the final solution of the structural reliability maximisation the transient response of the 
structure is shown in Fig. 4. This final optimal solution corresponds to the best one at 19th 
generation which MPP search is presented in Fig. 3 b). The dynamic behaviour corresponding 
to the mean values is compared with the structural response for the MPP. The final solution 

has a maximum absolute displacement close to mm 1098 1−−−−××××==== .da  as expected. 
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Fig. 4 Central deflection time history for the mean values of random variables and the MPP values for the best 

solution of the reliability maximisation problem 
 

Using the proposed numerical model formulated in Equation (22) the structural reliability is 
maximised. The optimal results for the ply angles and the corresponding MPP are presented 
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in Table 1. The algorithm is checked considering a fixed number of generations (k=12) 
without mean fitness evolution for the elite group.  
 

Table 1 Optimal values and associated most probable failure point (MPP) 

Design Variables  °°°°−−−−==== 921 ,θ  °°°°==== 8662 ,θ  °°°°==== 1263 ,θ  

MPP Values [GPa] 61831 ,====π  12302 ,====π  01823 ,====π  
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Fig. 5 Evolutionary history of reliability index maximisation 

 

The genetic search history for the solution of the optimisation problem given in Equation (27) 
is shown in Fig. 5. The solution is matured after 19 generations what can be considered a 
good trial considering the number of design and random variables intervening in the global 
search. It can be observed that the worst fitted individual of the elite group continues to be 
improved and at the end of the optimisation procedure is close to the best one. 

Genetic search works with a population of solutions instead of classical gradient based 
methods where only one solution is considered for a particular iteration. This way the fitness 
of the individuals of a population always improves. The efficiency of the presented 
evolutionary process is measured by the success rate of individuals coming from crossover or 
mutation, actually enter the elite group and the worst individuals of this group are eliminated. 

 

CONCLUSIONS 

A new methodology aiming the structural reliability maximisation and weight minimization 
of laminated composite structures under dynamic loading was presented. Reliability in 
dynamic response is defined as the probability of the structure does not fail within a specified 
time interval. To define the failure criteria and the associated limit state functions it is 
assumed that the structure fails if the maximum displacement, maximum strain or maximum 
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stress exceeds some specified values. A version of the Hasofer-Lind method adapted for 
dynamic response and a Shredding Genetic Algorithm were developed and applied with 
success. The optimisation process is based on a co-evolutionary Genetic Algorithm where a 
master population evolves together with a net of slave sub-populations. The proposed 
topology aims to link the Most Probable failure Point search with the maximisation of 
structural reliability and weight minimization. In particular, an example using a displacement 
limit state function was presented and the results for the reliability analysis show the 
robustness of the proposed approach. 

 

ACKNOWLEDGMENTS 

The author gratefully acknowledges the funding by FCT, Portugal, under grants PEst-
OE/EME/UI0225/2011. 
 

REFERENCES 

Chiachio M, Chiachio J, Rus G. Reliability in composites – A selective review and survey of 
current development. Composites: Part B, 2012, 43, p. 902-913. 

Conceição António CA. An approach to reliability based design of composite structures under 
dynamic response. ECCOMAS 2000 - European Congress on Computational Methods in 
Applied Sciences and Engineering, incorporating the VI International Conference on 
Computational Plasticity (COMPLAS VI), 11-14 Setembro, Barcelona, Spain, 2000. 

Conceição António CA. A hierarchical genetic algorithm for reliability based design of 
geometrically non-linear composite structures. Composite Structures, 2001, 54, p. 37-47. 

Conceição António CA. A hierarchical genetic algorithm with age structure for multimodal 
optimal design of hybrid composites. Structural and Multidisciplinary Optimization, 2006, 31, 
P. 280-294. 

Deng L, Ghosn M, Shao S. Development of a shredding genetic algorithm for structural 
reliability. Structural Safety, 2005, 27, p. 113-131. 

Hughes TJR, Liu WK. Implicit-explicit finite elements in transient analysis: stability theory. 
J. Applied Mechanics, 1978, 45, p. 371-374. 

Kvedaras AK, Kudzys A, Valiunas B. Reliability verification for composite structures of 
annular cross section. Mechanics of Composite Materials, 2009, 45, p. 407-414. 

Melchers RE. Structural reliability analysis and prediction. 2nd Edition, John Wiley & Sons, 
Chichester, UK, 1999. 

Spears WM, DeJong SK. On the Virtues of Parametrized Uniform Crossover. Proceedings of 
the Fourth International Conference on Genetic Algorithms, 1991, p. 230-236. 

Wang L, Grandhi RV. Intervening variables and constraint approximations in safety index 
and failure probability calculations. Structural Optimization, 1995, 10, p. 2-8. 
 

 


