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ABSTRACT 

The main goal of this paper is to develop a numerical model to assess the fire behaviour of 
cellular wood slabs with different drillings. A transient thermal analysis with nonlinear 
material behaviour will be solved with ANSYS program. The presented numerical model is 
based on a constructive solution proposed by Frangi and Fontana. The numerical results 
obtained will be compared with the experimental results from the reference. The developed 
numerical model allows future studies and simultaneously characterizes the effect of 
perforations in wooden slabs to minimize the fire risk. The numerical model can easily be 
adjusted for other constructive solutions, to facilitate the verification of fire safety, in 
buildings with several wood floors and slabs assemblies. 
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INTRODUCTION 

Wood is a natural material with good structural characteristics. Wood is strong in relation to 
its weight (Mackerle, 2005). Wood constructions are being widely used and the focus of this 
work is to present a typical cellular slab for floors or roofs assemblies. The cavities of these 
elements could be filled with insulation or wood-based fiberboards.  

Different works have been presented by researchers presenting analytical methods and 
experimental procedures to evaluate the physical degradation of wood due to fire action 
(White, 1999), (Poon, 2003), (Janssens, 2004), (Frangi, 2004), (Fonseca, 2010, 2011, 2012). 

When exposed to fire, wood produces a surrounding charring depth layer. This charcoal layer 
has no mechanical resistance and causes a reduction in the cross-section element, but 
otherwise slows the fire effect in the structure core. The size of the wood slabs and the 
provided insulation play an important role on fire safety. Also, the size of the perforations in 
wooden slabs could influence the heating effect though the thickness of the slab. 

The main objective of this work is to present a 3D numerical model to compare the 
experimental results from Frangi el al (Frangi, 2004) using the cellular wood slab with 
different drillings subjected to fire, in spruce material. Also a 2D numerical model will be 
used to compare the same results, according a recently study produced by (Fonseca et al, 
2013). The effect of size drilling and the use of internal fibreboard material will be analyzed 
to evaluate the thermal behavior of the cellular wood slab. 
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GEOMETRIC AND NUMERICAL MODEL 

In this study a cellular wood slab was exposed to fire, using different types of drillings, and 
with internal fibreboard. As represented in the figure 1 there are many different applications 
of this type of elements in building construction, since wood ceiling, blank wall or laid deck. 

 

     

Fig. 1 – Applications of cellular wood slab, ceilings and walls, with drillings. 

 

Nowadays, it is usual all these type of applications due the attractive design, good acoustics, 
thermal comfort, among others of relevant characteristics. The perforations in the cellular 
wood slab could allow improving these characteristics and also permitting the maintenance of 
cables or other infrastructures.  

Figure 2 represents different views of the geometric model based on the experimental model 
proposed by Frangi el al (Frangi, 2004). The model considers different cellular zones with 
different type and size of drillings (with rectangular and circular shapes). A 3D finite element 
(Solid70) with 8 nodes was used in Ansys program. Figure 2 also represents the mesh model 
used for transient thermal analysis.  

 

 
 

     

Fig. 2 – 3D geometric model, cellular wood slab with drillings – fibreboard and mesh model. 

 

The thermal properties of wood are function of the temperature and should be defined 
according the Eurocode 5 (CEN, 2003), see in figure 3. The density of the spruce wood 
material was considered equal to 450kg/m3 at room temperature. The effect of fire is 
considered using the appropriate boundary conditions due to convection and radiation. The 
temperature environment follows the standard fire ISO 834 curve, shown in figure 3. 

Medium density fibreboard (MDF) was applied in this slab using the properties of ISO 10456, 
(ISO/FDIS, 2007). Two MDF panels with a thickness equal to 20mm were used in the 
numerical model. The density was considered equal to 151.2kg/m3 and for this reason (below 
550kg/m3) is considered ultra-light MDF, EN316 (CEN, 1999). The thermal conductivity is 
equal to 0.05W/mK and the specific heat used is equal to 1700J/kgK, at room temperature and 
at elevated temperature. 
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Fig. 3 – Wood thermal properties and nominal fire curve (ISO 834). 

 

RESULTS AND DISCUSSION 

The cellular wood slab has different types of perforations with rectangular crack (SLP) and 
circular hollow (MP) at the bottom. The top surface of the slab is a solid wood with equal 
thickness. At the bottom surface, the cellular slab has different thicknesses equal to 31mm and 
40mm, as represented in the cross-section B in figures 4 and 5. Into the cellular wood slab, the 
fibreboard insulation has the same thickness, with two overlapping plates of 20mm each. 
Figure 4 represents the temperature at one side fire exposure (bottom surface) of the cellular 
wood slab with insulation, using Ansys and the 3D finite element, at the end of 1800s. 

 

 

 
(Frangi, 2004) 

 

18-775ºC  18-721ºC  

 
 

18-300ºC  18-300ºC  

 
Fig. 4 – Temperatures in cellular wood slab with fibreboard, at the end of 1800s. 
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The effect of the drilling size is visible and produces a delay in the charring layer formation 
when the diameter is small size. The rectangular shape presents a charring layer at the end of 
30min. The damage effect of fire is higher in the region of the slab with smaller wood 
thickness, as expected.  

Figure 5 represents the temperature field at the end of 30min, and the residual cross-section 
representing the char layer formation at the bottom surface. Two different cross-sections B 
and D, as shown in figure 4, are analysed to represent the char layer formation. 

 

Cross-section B 
Cross-section B 

 

 
 

a) Thermocouple positions, (Frangi, 2004) 

b) Ansys 2D – cross-section B 

c) Ansys 3D – cross-section B 

d) Ansys 3D – cross-section D 
 

Fig. 5 – Fire action at the end of 30min in cellular wood slab with fibreboard. a) Thermocouple positions and 
residual experimental cross-section B. b) Residual numerical cross-section with Ansys 2D. c) Residual numerical 

cross-section B with Ansys 3D. d) Residual numerical cross-section D with Ansys 3D. 
 

The numerical results are presented for the 3D model, with comparison between the 2D finite 
element (Fonseca et al, 2013) and the experimental tests (Frangi, 2004). The charred area 
represented has no effective resistance, producing a reduction in the resistance of the effective 
cross section. On the other hand, the charring depth depends on the time of fire exposure. In 
this case also depends of the MDF insulation material and the type of perforation. Cross-
section B presents higher charred layer when compared with cross-section D.  

The time temperature evolution was also compared, in particular thermocouple positions 
during 30 minutes. Figure 5a represents these points (Tk) and figure 6 represents the results 
during fire. The temperatures are presented in four different locations (top and bottom of the 
MDF material) through cellular wood slab.  

As represented in figure 6, in general, the numeric values are in good agreement with the 
experimental measured values. The perforations SLP promotes a faster heating process with 
higher temperatures expected on the bottom surface of the MDF insulation material. The 
reading positions located on the upper MDF surface exhibit relatively low values of 
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temperature. The perforations MP were compared with the SLP showing lower temperatures 
during 30min of fire exposure.  

 

 
SLP (d=20, L=250), t=31 

 

 
MP (d=20), t=31 

 

 

 
SLP (d=20, L=250), t=40 

 
MP (d=20), t=40 

 
Fig. 6 – Time-temperature history in different nodal positions during 1800s. 

 

CONCLUSIONS 

Conclusions were presented and discussed about the importance of the temperature field 
obtained in wood cellular slab with perforations using a finite element modelling. The 
numerical method reveals good performance when compared with the experimental model. A 
3D finite element model in transient thermal analyses was used. The results obtained are 
similar when compared with the experimental. It was found that in this kind of slab, the 
perforation type can limit the use of these elements in terms of fire resistance. In case of fire 
exposure at one side with perforations, the type and size of perforations should be chosen 
before, to prevent and delay the heating effect, allowing that the slab could remain in service 
during more time. 
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