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ABSTRACT 

Internal defects detection by ultrasound non destructive testing is widely used in industry. 

Ultrasonic time signal data are difficult to interpret since they require continuous signal 

analysis for each point of the piece. Inverse problem in materials analysis puts some 

challenges because the composition variables are both discrete and continuous and because 

the engineering properties are highly nonlinear functions. In this paper we address the non 

linear features of back scatted ultrasonic waves from steel plate, for understanding its micro 

structural behaviour. The experiments show a challenging interface between material 

properties, calculations and ultrasonic wave propagation modelling. 
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INTRODUCTION 

The performance of ultrasonic examination techniques in stainless steel austenitic structures, 

clad components, and welds are often strongly affected by the materials anisotropy and 

heterogeneity. The major problems encountered are beam skewing and distortion, high and 

variable attenuation and high background noise. Following the exact defect localization, 

sensitivity to inner flaw detection and identification benefit, ultrasonic testing is widely used 

in the inspection of many industrial components as austenitic steel or composite samples. 

Ultrasonic data are difficult to interpret since they require analysis of a continuous signal for 

each point of the material under consideration. Due to the inherent inhomogeneous and 

anisotropy nature of these materials, ultrasonic waves undergo high acoustic attenuation and 

scattering effect, making data interpretation highly complex. Echoes backscattered from the 

front and back surface of specimen, combined with other backscattered flaws or 

microstructures echoes, are often overlapped, making the identification of flaws difficult.  

In this paper we present a method based on the multi-resolution theory as ultrasonic signal 

multi-scale modeling for the exploration of the structural noise features and its analyzing 

function. In the proposed de-noising procedure the noise features were extracted by an energy 

smoothing algorithm by which the random nature of the noise in the spatial domain is 

bypassed. This energy characterization of the structure noise and the defect to be detected has 

given an improved filtering process. The de-noising algorithm performs an accurate signal 

reconstruction with an enhanced detection of very little defects. However if anisotropic noise 

is related to local variations in texture or shapes of macro etches, the relationship of this 

ultrasonic property to microstructure is not well understood, and no careful theory has been 

presented to quantitatively describe these relationships. The following experiments obtained 
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from a structural noise of a steel plate, will give significant insights into the relationship of 

backscattered noise and microstructure which will ensue to understand the microstructure 

dimension scales. 

 

RESULTS AND CONCLUSIONS 
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Fig. 1 -  Input signal ‘circle of 1mm size’, and the de-noised signal ‘circle of 1mm’ after processing 
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Fig. 2 - Regression analysis of the input signal ‘complex fft and residuals’, and the filtered one 
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Fig3. Extracted noise, complex fft and residuals 
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This study shows that many data are recovered by the noise function. The de-noising process 

is very suitable for even little sized defects. The regression analysis shows occurrence of data 

of microstructure level.  A powerful and deep analysis could give correlation with material 

properties. 
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