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ABSTRACT 

Mechanics and thermodynamics are two very important scientific disciplines to solve 
many interdisciplinary problems. Temperature variations can significantly change the 
vibration characteristics of macro-, micro- and nano-structures. In the presented article we 
have studied the microbeams and nanotubes vibration under thermal effects. Microbeams and 
nanotubes will be very important in future industry like MEMS and NEMS industry. For the 
physical explanation of vibration of nanotubes classical mechanics is valid with some 
limitations. We have taken into account the influence of thermal force, axial force in rotating 
shaft and also gyroscopic effect at the same time. The effect of temperature-dependent 
material properties was considered primary with respect to temperature variations. On the 
basis of our analytical model is possible to determine the vibrational characteristics in very 
wide region of temperatures. In the presented paper is shown for the first time in scientific 
literature the combination of temperature, gyroscopic effects and rotor speeds on shaft and 
beam vibrations. For nanobeams vibration we have taken into account the nonlocal and local 
beam models. 
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INTRODUCTION-IMPORTANT THERMOPHYSICAL PROPERTIES FOR 
CALCULATION OF VIBRATION CHARACTERISTICS 

The solid structures are consisted from atoms and molecules. The basis of the relative 
motion of molecules and atoms in the solid structures as well as  the effect of attractive and 
repulsion forces are intermolecular and intramolecular interactions between the electrons and 
nuclei [1]. In the solid structures are dominant effects important to crate solid structure 
intermolecular forces and vibration of atoms in molecules. To model vibration of engineering 
structures we need to take into account the value of thermophysical properties like Young 
modulus, the coefficient of linear expansion…. From the thermomechanics discipline we 
know that all thermodynamic properties are dependent on temperature field. But in the micro 
and nano world we need to take into account also other effects. In the presented article we 
will also try to show that in some cases also the dimension of vibrating element has the 
influence on thermophysical properties.  

 One of the great scientific and technical advancement at the end of 20th century and at 
the start at the 21st century is the creation of nanomaterials and nanotechnology. The area 
which cover all important problems from that field is called in the broadest sense the 
mechanics. Regarding the cross sectional diameter we can divide mechanics into some 
subdisciplines:1 
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macromechanics 10-4-10-5 m, 
mesomechanics 10-5-10-7 m, 
micromechanics 10-7-10-8 m, 
nanomechanics: 10-8-10-9 m. 
Since the atomic level (interatomic distance in a crystal lattice) has an order of one to 

several Å (10-10 m) the nanolevel is restricted to 10-9 m. 
 

The vibrations of beams and microbeams is of vital importance in mechanical engineering. 
Mechanical machines very often operate under diverse temperature conditions. In internal 
combustion engines, rocket systems, movement of the satellites, MEMS and NEMS the 
conditions are particularly temperature-sensitive. Thermodynamic effects are frequently 
ignored in research, which may yield totally incorrect results. Literature [3] shows that even 
the slightest temperature change leads to huge alteration of the clamped beam vibration 
properties. Contrary as in papers [1-3], the impact in the present paper is not neglected of a 
change in thermodynamic properties, which have to be taken into consideration at major 
temperature changes. Carbon nanotubes in dependence of the chiral angle can be classified 
into three types: armchair, zigzag and chiral. Numerous studies are available on the physical 
properties of armchair and zigzag carbon nanotube in the literature. However, only a limited 
portion of the literature studied nanotubes in dependence of temperature field. This article 
develops a model that analyzes the frequency of the chiral single-walled carbon nanotubes 
(SWCNTs) subjected to a thermal vibrations by using Timoshenko beam model, including the 
effect of rotary inertia and shear deformation. The Timoshenko model we have compared 
with with Euler model. 
Carbon nanotubes could be classified into single wall nanotubes (SWNT) and multi wall 
nanotubes (MWNT). On the basis of molecular simulation many researchers found the 
solution that modulus of elasticity is no more constant, is dependent on diameter of nanotube 
and thickness of nanotube [4,5,13].  On the basis of molecular dynamics calculation we could 
express equations for surface Young modulus and Poisson number for armchair SWNT: 
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The above equation are obtained on the basis of continuous mechanics and molecular 
simulation [3,4], where Ys means surface Young modulus [13]  and ν Poisson number. From 
the Figs. 1-3 we could see that material properties are temperature and also size dependent. 
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LOCAL EULER-BERNOULI AND TIMOSHENKO BEAM MODELS UNDER 
THERMAL STRESSES 

Let us assume that the support is homogenous, having the same temperature over its entire 
length. As a result of thermal expansion, an additional axial force FT occurs: 
 

EAFT            (5) 

In equation (7)  is the linear thermal extension coefficient, θ is the temperature difference 
between the actual and initial or reference temperature. The equation by means of which we 
can resolve the problem using the axial force is as follows according to Wear, Timoshenko 
and Young [4]: 
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where E means Young modulus, I area moment of inertia, A area, ρ density of material, t time 
and w the displacement. Using the method of separation of variables      txXt,xw   and 
introducing the new functions, Equation (8) can be written down in a slightly less complicated 
way: 
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where the partial derivatives have been replaced with total derivatives. 
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In Equation (11), the new symbols represent the following functional relations: 
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Thus, a general solution to Equations (4) and (5) are ( 24   ) [1-4]: 
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In the equation (11) the value of  (where is hidden the influence of angular frequency ) and 
three of four constants of integration C1, C2, C3 and C4 are determined from the boundary 
conditions. The fourth constant is possible to find in the combination with the constants A and 
B in Equation (12). For a given beam at defined temperature the values by  depend upon the 
boundary conditions [5-9]. Using boundary conditions, the following solutions can be 
analytically computed (  22 , LL  ): 
 
For  supported-simply supported beam regarding boundary conditions we obtain the next 
equation: 

  0sin             (13) 
 
With the known angular frequencies n of individual modes of vibration is possibly to 
calculate Xn and n of individual modes of vibration. To determine the solution for the 
displacement we have to solve the equation [5-9]: 
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where the modal shapes can be shown to be orthogonal: 
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The model presented in our paper is fully analytical, but if compared with the measured 
results it points to a large deviation from reality [1, 2]. The biggest problem of this model is 
that in the mathematical model in question the clamped wall can fully withstand the beam for 
the beam to have a constant length all the time. The above assumption is not realistic. As a 
result, a new model was designed to reduce to at least to some extent the huge differences 
between the analytical results and the measured values. 
 
LOCAL TIMOSHENKO BEAM MODEL  
 

The Timoshenko beam model [4] includes the effect of rotary inertia and shear 
deformation. The Timoshenko vibrational beam model gives the next expression: 
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In the Eq. (16) is I dynamic moment of inertia of the beam, nanotube, K is the shear 
coefficient of nanotube,  is the Poisonns ratio. Ft presents additional thermal force: 
 

TEAFt             (18) 

 
The solution of eq. (16) could be expressed as:      

tie)x(y)t,x(Y            (19) 
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In the Eq (29) we call ߱ angular frequency On the above approximations the following 
dimensionless forms can be expressed as: 
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Where  represents the effect of thermal vibration of the frequency of SWCNT. The general 
solution of Eq. (30) could be expressed as 
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When the solution integrate with boundary condition for support-simply support nanotube 
model we obtain the solution: 
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For the case of Euler-Bernouli beam (ߙ ൌ ߚ ൌ 0) we obtain the next equation: 
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RESULTS AND DISCUSSION 

The presented mathematical model was used to calculate thermodynamic properties of state of 
pure aluminum microbeam. Table 1 contains the main important data of the beam. The 
aluminum beam is very interesting, particularly due to relatively high expansion coefficients. 
In the presentd section we have calculated vibrational characteristics for supported-simply 
supported systems. For carbon nanotubes we have used data for Young modulus and linear 
expansion coefficient shown in Prakash Thesis [7]. Indicated in Figures 2 and 3 show angular 
frequency for nanotubes for 1st, second and third order. From both Figures we see that when 
we have relatively long nanotube (L/D>10) the results for Timoshenko and Euler-Bernouli 
model give similar results, contrary when we have short nanotubes the Timoshenko model 
gives much better results for 1st and higher orders..  
 
Table 1: Fundamental constants for aluminum beam 

 Beam 
Length (m) 6.35·10-2

Width (m) 2.04·10-2

Thickness (m) 1.62·10-3

Young modulus (N/m2) 6.9·1010

Volume expansion coefficient (1/K) 24·10-6 K-1

Spring constant (N/m) 1.553·105

Density (kg/m3) 2780 
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Figure 2: Fundamental frequency for nanotube with L/D=40 with Timoshenko and Euler- 

Bernouli model 

 
 

Figure 3: Fundamental frequency for nanotube with L/D=4 with Timoshenko and Euler- 
Bernouli model 
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CONCLUSION 

The presented article shows the vibration characteristics for beams, minibeams and 
macrobeams in dependence of temperature field. The presented aanalysis also shows where 
the results of Euler-bernouli and Timoshenko  deviate essentialy. In the presented article is 
also for the first time in scientific literature also presented analytical solution also for higher 
vibration orders for nanobeams.  
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