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ABSTRACT 
The paper considers the harmonic and eigenvalue problems for piezoelectric nanodimensional 
bodies with account for surface stresses and surface electric charges. For harmonic problem 
the new mathematical model is suggested, which generalize the model of the piezoelectric 
medium with damping properties, boundary conditions of contact type and surface effects. 
The classical and generalized or weak statements for harmonic and eigenvalue problems are 
obtained in the extended and reduced forms. The spectral properties of the eigenvalue 
problems with account for surface effects are determined. A variational principle is 
constructed which has the properties of minimality, similar to the well-known variational 
principle for problems with pure elastic and piezoelectric media. The discreteness of the 
spectrum and completeness of the eigenvectors are proved. As a consequence of variational 
principles, the properties of an increase or a decrease in the natural frequencies, when the 
mechanical, electric and "surface" boundary conditions and the moduli of piezoelectric solid 
change, are established. The finite element approaches are described for determination of the 
natural frequencies, the resonance and antiresonance frequencies and harmonic behavior of 
nanosize piezoelectric bodies with account for surface effects.  

Keywords: piezoelectricity, nanomechanics, surface effect, surface stress, harmonic 
oscillations, eigenvalue, resonance frequencies, finite element method 

 

INTRODUCTION 
As it is known, nanomaterials has abnormal mechanical properties which differ considerably 
from conventional macromaterials. One of the factors that are responsible of the behavior of 
nanomaterials can be surface effects. As recent investigations (see, for example, Duan, 2005, 
Duan, 2006, Jing 2006) show, that for the bodies of submicro-and nanosize the surface 
stresses play an important role and influence the deformation of the bodies in general. Similar 
to the elastic bodies, when analyzing the piezoelectric nanosize media one can introduce 
surface stresses and distributed electric charges into the model by adding to the surface the 
corresponding elastic membranes and dielectric films. This approach is used in the present 
work for investigations of the vibrations of piezoelectric nanosize bodies. 

 

CLASSICAL FORMULATION OF HARMONIC PROBLEM FOR PIEZOELECTRIC 
BODY WITH SURFACE EFFECTS 

Let  be a bounded in Ω 3R  region, occupied by the piezoelectric body;  is the 
boundary of the region, n  is the vector of the external unit normal to 

Ω∂=Γ
Γ . Confining ourselves 

to the consideration of the stationary oscillations regimes with the circular frequency ω , we 
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will use only amplitude values of all physical-mechanical variable hereinafter without special 
reference. Let us consider the vector of mechanical displacements )(xuu =   and the electric 
potential )(xϕϕ =  as the main variables for the piezoelectric medium. Using these functions, 
we can define the second-order strain tensor )(uεε =  and the electric field vector )(ϕEE =  

 2 ,  /)( Tuuε ∇+∇= ϕ−∇=E ,   (1) 

where  is the nabla-operator, and in R∇ 3 in the Cartesian coordinate system 
}/,/,/{ 321 xxx ∂∂∂∂∂∂=∇ ;  is the transpose operation. T(...)

In linear approximation similarly to (Nasedkin, 2000) we adopt the following constitutive 
equations for piezoelectric medium 

 ,      (2) Eeεc ⋅−⋅⋅+= T
dj )1( ωβσ

 ,     (3) EκεeD ⋅++⋅⋅= −1)1( djως

where  is the second-order stress tensor;  is the electric displacement vector;  is 
the forth-order tensor of elastic modules, measured at constant electric field;  is the third-
order tensor of piezomoduli;  is the second-order tensor of dielectric permittivities, 
measured at constant strain (usually, tensor of dielectric permittivities denote as , i.e. here 

); 

σ D Ecc =
e

Sκκ =
Sε

SS εκ = dβ and dς  are the damping coefficients. (Here the conventional for the 
piezoelectricity theory superscripts at  and  ( ) are omitted for the compactness 
of further notations.) 

Ec Sκ SS εκ =

The equation of motion and equation of quasielectrostatics for the harmonic problem can be 
written in the form 

 ,     (4) ufσ )( 2
djωαωρρ +−=+⋅∇

 ,        (5) Ω=⋅∇ qD

where ρ  is the mass density of the material;   is the vector of mass forces; f dα  is the 
additional damping coefficient;  is the density of free electric charges (usually, ). Ωq 0=Ωq

In models (1)-(5) for the piezoelectric material, we use a generalized Rayleigh method of 
damping evaluation (Belokon, 2002, Nasedkin, 2010), which is admissible for many practical 
applications. When 0=dς  in Eq. (3), we have the usual model for taking into account of 
mechanical damping in piezoelectric media which is adopted in several well-known finite 
element packages. It is true that, by virtue of the coupled state of the mechanical and electric 
fields, the damping effects will also extend into the electric fields when 0=dς . More 
complicated model (2), (3) extends the Kelvin's model to the case of piezoelectric media. It 
has been shown that the model (2), (3) with dd ςβ =  satisfies the conditions of the energy 
dissipation and has the possibility of splitting the finite element system into independent 
equations for the separate modes (Belokon, 2002). 

The density )(xρ  is assumed to be piecewise-continuous and 0  0 >∃ ρ : 0)( ρρ ≥x . The 
material modules of the medium in (2), (3) are piecewise-continuous together with their first 
derivatives by x  with usual symmetry conditions ( klijjiklijkl ccc == , , ilkikl ee = lkkl κκ = ), and 
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for the positive definite volume density of internal energy  the following inequality 
should satisfy , E  

),( EεW
Tεε =∀  

0  >∃ Wc :   )()(
2
1),( EEεεEκEεcεEε ⋅+⋅⋅≥⋅⋅+⋅⋅⋅⋅= T

W
T cW . (6) 

The system of differential equations (4), (5) should be completed by the suitable boundary 
conditions. These boundary conditions can be divided in two types, mechanical and electric. 

To formulate the mechanical boundary conditions we assume that the boundary Γ  is divided 
in two subsets  and σΓ uΓ  ( uΓ∪Γ=Γ σ ). 

We will assume that at the part of the boundary σΓ  there are the surface stresses  and the 
vector of mechanical stress   

sτ

Γp

 , Γ+⋅∇=⋅ pτσn ss
σΓ∈x ,    (7) 

where  is the surface gradient operator, associated with nabla-operator by the formula 
; 

s∇
rs ∂∂−∇=∇ /n r  is the coordinate, measured by the normal to σΓ ;  is the second-order 

tensor of surface stresses. 

sτ

As for purely elastic body, when taking into account the surface stresses and the Kelvin's 
damping model we adopt that the surface stresses  are related to the surface strains  by 
the formula 

sτ sε

 , , (8) sss
d

s j εcτ ⋅⋅+= )1( ωβ 2/))(( Tsss uAAuε ∇⋅+⋅∇=

where  is the new damping coefficient;  is the forth-order tensor of surface elastic 
modules; ,  is the unit tensor in 

s
dβ

sc
nnIA ⊗−= I 3R . 

The properties of the tensor of surface elastic modules  are analogous to the corresponding 
properties of the tensor , i.e. , 

sc
c s

klij
s
jikl

s
ijkl ccc ==

0  >∃ Uc :    sTs εε =∀  ss
U

ssss cU εεεcεε ⋅⋅≥⋅⋅⋅⋅=
2
1)( , (9) 

that follow from the condition of the positive definiteness of the surface energy density 
. )( sU ε

Suppose that iuiu Γ∪=Γ ; ; Li  ..., ,2 ,1 ,0= ∧≠Γ 0u , iuΓ  do not border one another; while 
among  there are  surfaces with given functions of displacement iuΓ lL −+1 Γ= uu  
( ) and  plane regions (},...,2,1,0{ LllJi r ++=∈ l } ..., ,2 ,1{ lJi p =∈ ), in friction-free contact 
with rigid massive punches (stamps). We will connect with region iuΓ ,  the local 

coordinate system  so that the axis  coincides in direction with the direction 

of external normal n  at the point ; and the axes  and  will be the main axes of 
inertia for the punch with number i  (Fig. 1). Then, we can assume the following boundary 
conditions for  

pJi∈
)(

3
)(

2
)(

1
)( iiiiO ξξξξ

)(
3
iξ

)(iOξ
)(

1
iξ )(

2
iξ

iuΓ
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∑
=

=⋅
2

0

)(

k

i
k

u
ikξαun , ( ), 1)(

0 =iξ iuΓ∈x , ,  (10) pJi∈

pi
i

p
u
ip

p
d

i
p PMjd

iu

+−=Γ⋅⋅∫Γ
)(2)( )( αωαωξ nσn , 2,1,0=p , ,  (11) pJi∈

ss τnnσnσn ⋅∇=⋅⋅−⋅ )( , iuΓ∈x , ,  (12) pJi∈

iΓ= uu , iuΓ∈x , ∧≠Γ 0u , ,  (13) rJi∈

where in (10), (11) the summation by repeating index  and i p  is missing;  is the normal 
displacement of the punch with number ; ,  are the punch rotation angles 

about axes  and , respectively;  is the mass of punch; , 

 are the inertia moments of punch;  are the force (with ) and the 

moments (with ), acting on the punch with number ;  is the damping coefficient 
for massive punches motion;  are the components of determined functions of 
displacements on , . 

u
i0α

i )(
21
iu

i θα −= )(
12
iu

i θα =
)(

2
iξ )(

1
iξ )(

0
iM )(

2
)(

2

)(
1 iiJM i

ξξ
=

)(
1

)(
1

)(
2 iiJM i

ξξ
= piP 0=p

2,1=p k p
dα

)(xuu ii ΓΓ =

iuΓ rJi∈

 
Fig. 1. Contact type boundaries with plane punches. 

 

Note that here in friction-free contact between nanodimensional body and rigid punches the 
tangential stresses are not equal to zero, but are balanced by (12) to the effect of surface 
stresses, as in (7). 

To set the electric boundary conditions we assume that the surface Γ  is also subdivided in 
two subsets:  and  ( ). DΓ ϕΓ ϕΓ∪Γ=Γ D

The regions  does not contain electrodes and hold the following conditions DΓ

 , Γ−⋅∇=⋅ qss dDn DΓ∈x ,    (14) 

where ;  is the additional new damping coefficient; 
; 

sss
d

s j EAκAd ⋅⋅⋅+= −1)1( ωζ s
dζ

ϕss −∇=E sκ  is the second-order dielectric permittivity tensor that is symmetrical positive 
definite relatively to the vectors ;  is the known surface density of electric charge, and 
usually, . 

sE Γq
0=Γq
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As it can be seen, here analogously to the boundary condition (7) at the free of electrodes 
boundaries  we take into account the influence of the surface films with the vectors of 
surface electric displacement  and with the vectors of surface electric field . 

DΓ
sd sE

The subset  is the union of ϕΓ 1+M  regions iϕΓ  ( VQ JJi ∪∈ ), , 
), that does not border on each other and are covered with 

infinitely thin electrodes. At these regions we set the following boundary conditions 

} ,...,2 ,1{ mJQ =

} ,...,2 ,1 ,0{ MmmJV ++=

iΦ=ϕ , iϕΓ∈x , QJi∈ ,    (15) 

iQd
i

−=Γ⋅∫Γϕ

Dn , ii QjI ω±= , QJi∈ ,   (16) 

iV=ϕ ,  iϕΓ∈x , ∧≠Γ 0ϕ , ,  (17) VJi∈

where the variables ,  do not depend on x ;  is the overall electric charge on electrode 
, and the sign " " in (16) is chosen in accordance with the accepted direction of the 

current  in the electric circuit. 

iΦ iV iQ

iϕΓ ±

iI

According to (15), (16) over the parts iϕΓ  the electric potential iΦ  is the same but unknown a 
priori, and the additional condition to define this is the integral condition (16). Such 
electrodes  with iϕΓ QJi∈  can be named as electrodes with independent currents or charges 
sources. For  these electrodes are called also as open-circuited electrodes. The second 
set of electrodes  with  can be named as electrodes with independent voltage 
sources. For  these electrodes are called also as short-circuited electrodes. 

0=iI

iϕΓ VJi∈
0=iV

Let us note that in (15) and (17)  and  are free of space coordinate , and so, the 
boundaries  are equipotential surfaces. Integral condition (16) is an analogue to the contact 
condition for rigid punches. But the distinctive feature of the piezoelectric devices is that 
boundary conditions (15) – (17) are necessary for them, since they determine the outer electric 
influence between , ,  or . 

iΦ iV x

iϕΓ

iΦ iV iQ iI

Note that here the electric surface effects are taken into account by introducing the member 
with the vector of surface electric displacements  into relation (14). On the regions sd iϕΓ  
surface electric displacements are equal to zero, because on iϕΓ  electric potential is not 

depend from coordinates , and therefore, , . x 0=sE 0=sd

Problem (1) – (17) is the classical formulation of the harmonic problem for piezoelectric body 
with the generalized Rayleigh damping and with account for surface effects. 

Observe that the boundary conditions (10) – (12) for plane rigid punches usually are absent, 
i.e. , . We introduce these unconventional cases of contact conditions with rigid 
punches to demonstrate an analogy between these mechanical boundary conditions and 
electric boundary conditions for electrode surfaces. 

∧=pJ 0=l

As an example, a variant of mechanical boundary conditions (10) – (13) for ,  and 
a variant of electric boundary conditions (15) – (17) for 

4=L 2=l
3=M , 1=m  are shown on Fig. 2, 

(left and right, respectively).  
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Fig. 2. Example of mechanical and electric boundary conditions. 

 

GENERALIZED OR WEAK PROBLEM STATEMENTS 
We transfer from the classical formulation (1) – (17) of the harmonic problem for 
piezoelectric bodies with the generalized Rayleigh damping and with account for surface 
effects to their generalized or weak settings. 

Previously we introduce the complex valued space of the functions ϕ  and the vector 
functions , defined on . We denote by  the space of vector functions  with 

scalar product 

u Ω 0
ρH 2L∈u

Ω⋅= ∫Ω d
T

H
uvuv ρ

ρ
0),( , where (...)  is the complex conjugation operation. 

On the set of vector functions  which satisfy homogeneous boundary condition (13) 
 on , , and (10) for arbitrary  for 

1C∈u
0=u iuΓ rJi∈ u

kiα iuΓ , pJi∈ , we introduce the scalar 

product Γ⋅∇⋅⋅∇⋅+Ω⋅∇⋅∇= ∫∫ ΓΩ
dd sTsT

H u
)()()(),( 1 AuvAuvuv

τ

; )( iuJi p
Γ∪∪Γ=Γ ∈στ . 

The closure of this set of vector functions  in the norm generated by the indicated scalar 
product will be denoted by . 

u
1
uH

For functions  which satisfy homogeneous boundary condition (17) 1C∈ϕ 0=ϕ  on iϕΓ , 
, and (15) for arbitrary  on VJi∈ iΦ iϕΓ , QJi∈  we introduce the scalar product 

Γ∇⋅∇+Ω∇⋅∇= ∫∫ ΓΩ
dd sTsT

H
D

ϕχϕχϕχ
ϕ

)()(),( 1 . The closure of this set of functions ϕ  in 

the norm generated by the indicated scalar product will be denoted by . 1
ϕH

In order to formulate the generalized or weak solution of harmonic problem we scalar 
multiply equation (4) by arbitrary vector function 1

uH∈v , and we multiply equation (5) by 

some function 1
ϕχ H∈ . By integrating the obtained equations on Ω , and by using the 

standard technique of the integration by parts with Eqs. (1) – (3), (7), (8), (10) – (17), we 
obtain the following integral relations 

),(~),(),()1(),()1(
),()(),()( 22

vvuvuv
uvuv

u
s
dd

P
p
dd

Lecjcj
jj

=+++++
++−++−

ΓΩ ϕωβωβ
ρωαωρωαω

  (18) 

)(~),()1(),()1(),( 11 χϕχκωςϕχκωςχ ϕLjje s
dd =++++− Γ

−
Ω

−u ,  (19) 
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where 

0),(),(
ρ

ρ
H

uvuv = , ∑∑
= =

=
l

i k

i
k

u
ki

v
kiP M

1

2

0

)(),( ααρ uv ,   (20) 

Ω⋅⋅⋅⋅= ∫ΩΩ dc )()(),( uεcvεuv , Γ⋅⋅⋅⋅= ∫ΓΓ dc sss )()(),( uεcvεuv
τ

,  (21) 

Ω⋅⋅⋅−= ∫Ω de )()(),( vεeEv ϕϕ ,    (22) 

Ω⋅⋅= ∫ΩΩ d)()(),( ϕχϕχκ EκE , Γ⋅⋅= ∫ΓΓ dsss

D

)()(),( ϕχϕχκ EκE ,  (23) 

Further, we present the solution } ,{ ϕu  of the harmonic problem in the form 

buuu += 0 , bϕϕϕ += 0 ,     (24) 

where , 0u 0ϕ  satisfy homogeneous boundary mechanical and electric conditions and , bu bϕ  
satisfy the inhomogeneous boundary conditions, i.e. 

∑
=

=⋅
2

0

)(0
0

k

i
k

u
ki ξαun ,   ,   ,   ∑

=

=⋅
2

0

)(

k

i
k

ub
kib ξαun u

ki
bu

ki
u
ki ααα =+0

iuΓ∈x ,   , (25) pJi∈

00 =u , , ib Γ= uu iuΓ∈x , ∧≠Γ 0u , rJi∈ ,   (26) 

i00 Φ=ϕ , bib Φ=ϕ , ibii Φ=Φ+Φ0 , iϕΓ∈x , ,   (27) QJi∈

00 =ϕ , ib V=ϕ , iϕΓ∈x , ∧≠Γ 0ϕ , VJi∈ ,   (28) 

and therefore, , . 1
0 uH∈u 1

0 ϕϕ H∈

By using (24) we can rewrite the system (15), (16) in the form 

),(),(),()1(),()1(
),()(),()(

000

0
2

0
2

vvuvuv
uvuv

u
s
dd

P
p
dd

Lecjcj
jj

=+++++
++−++−

ΓΩ ϕωβωβ
ρωαωρωαω

  (29) 

)(),()1(),()1(),( 0
1

0
1

0 χϕχκωςϕχκωςχ ϕLjje s
dd =++++− Γ

−
Ω

−u , (30) 

where 

),,(),()1(),()1(
),()(),()()(~)( 22

vuvuv
uvuvvv

bb
s
dbd

bP
p
dbduu

ecjcj
jjLL

ϕωβωβ
ρωαωρωαω

−+−+−
−+−−+−−=

ΓΩ

  (31) 

),()1(),()1(),()(~)( 11
b

s
dbdb jjeLL ϕχκωςϕχκωςχχχ ϕϕ Γ

−
Ω

− +−+−+= u . (32) 

As it can be easily noted, an account for surface effects for piezoelectric bodies in relations 
(18) – (32) is reduced to adding the forms  and ),( uvΓc ),( ϕχκΓ . Therefore we can use the 
approaches from (Belokon, 1996, 2002, Nasedkin, 2010) for conventional problems for 
piezoelectric bodies without surface effects. 

Now we can define of generalized or weak solution of harmonic problem (1) – (17) using 
previously introduced functional spaces. 

IRF’2013  7



4th International Conference on Integrity, Reliability and Failure 

Definition 1. The functions u , ϕ  in the form (24) are the weak solution of harmonic problem 
for piezoelectric bodies with the generalized Rayleigh damping and with account for surface 
effects, if Eqs. (29), (30) with (31), (32), (20) – (28) are satisfied for , . 1  uH∈∀ v 1

ϕχ H∈

Let us consider the case ,  more explicitly.  p
dd αα = s

dd
s
dd ςςββ ===

Then the forms ),(),(),(~
000 uvuvuv Pρρρ += , ),(),(),( 000 uvuvuv ΓΩ += ccc , 

),(),(),( 000 ϕχκϕχκϕχκ ΓΩ +=  are symmetrical, bilinear and positive defined in , , 
 respectively, while 

2L 1
uH

1
ϕH ),( 0 vϕe  or ),( 0uχe  is bilinear form. The forms ),( 0uχe , ),( 0ϕχκ  

for fixed ,  and1
0 uH∈u 1

0 ϕϕ H∈ )(χϕL  are linear-bounded functionals in . By Riesz' 

theorem the elements , 

1
ϕH

0ue 0κϕ  and  exist and are unique for all . ϕl
1
ϕχ H∈

1),(),( 00
ϕ

χχ
H

ee uu = ,  1),(),( 00
ϕ

κϕχϕχκ
H

= , 1),()(
ϕ

ϕϕ χχ
H

lL = . (33) 

For variable ,  it is obvious that  and 1
0 uH∈u 1

0 ϕϕ H∈ 0ue 0κϕ  are linear operators acting 

from  into  and from  into , respectively, and an inverse exists for the operator 1
uH 1

ϕH 1
ϕH 1

ϕH

0κϕ . Then, from (30), (33) we obtain that 

))(1( 00 ϕωβκϕ lej d ++= u ,  , , (34) ))(1( 1
00 ϕκωβϕ lAj d

−++= u eA 1−= κ

where the operator  act from  into , and is linear and bounded. A 1
uH 1

ϕH

Using (33), (34) we can represent the system (29), (30) in the reduced form 

),,()1()(
),(~)],(~),(~[),(~

11
0000

2

vv
uvuvuvuv

AljL
ccj

du

dd

ϕκκωβ
βραωρω

−−+−=
=+++−

   (35) 

where  

),(),(),(~
000 uvuvuv AAcc κ+= .    (36) 

Note that the form ),(~
0uvc  is positive defined in , that is provided by conditions (6), (9). 

So we can introduce the functional space  with the scalar product 

1
uH

1
cH ),(~

0uvc , and this space 
is equivalent to . As is obvious the basic mathematical properties of the problem (35) are 
the same as for appropriate problems for elastic bodies (Altenbach, 2010). 

1
uH

 

EIGENVALUE PROBLEM 
In this section we focus on eigenvalue problems for piezoelectric solids with account for 
surface effects. Such problems are central to the analysis of real piezoelectric nanosize 
devices working in dynamic conditions. Indeed, the frequencies of electric resonances and 
antiresonances are the natural frequencies of a piezoelectric body. These frequencies 
determine the dynamic electromechanical coupling factors and the most effective frequency 
ranges for real piezoelectric nanosize device. 

The natural frequencies )2/( πωkkf =  for piezoelectric solids can be found from the solution 
of the generalized eigenvalue problem or modal problem, obtained from (29), (30) with 
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0====== s
dd

s
dd

p
dd ςςββαα , 0)( =vuL , 0)( =χϕL , ( ) 0uL =v , 0 ( ) 0Lϕ χ = , i.e., without 

any external inhomogeneous influences and without damping effects (then, ,0uu = 0ϕϕ = ) 

0),(),(),(~2 =++− vuvuv ϕρω ec ,    (37) 

0),(),( =+− ϕχκχ ue ,    (38) 

 

or from (35) we can write the reduced formulation 

0),(~),(~2 =+− uvuv cρω .    (39) 

This eigenvalue problem for the case ),(),(~ uvuv ρρ = , i.e. without contact boundary 
conditions, is recently investigated in (Nasedkin, 2013) by using the approaches from 
(Belokon, 1996, Altenbach, 2011). Because form ),(~ uvρ  have the same principal 
mathematical properties that form ),( uvρ , the following principal results take place for 
eigenvalue problem (37), (38) or (39). 

Definition 2. We will call the triple of quantities , , , which satisfy (39) for 

arbitrary vector function  or, which is equivalent, (37), (38) for arbitrary , 
 a generalized or weak solution of eigenvalue problem (1) – (17) for piezoelectric 

body with account for surface effects. 

2ω 1
uH∈u 1

ϕϕ H∈
1
uH∈v 1

uH∈v
1
ϕχ H∈

Theorem 1. The operator equation (39) of eigenvalue problem for piezoelectric body with 
account for surface effects has a discrete real spectrum ;  as 

, and the corresponding eigenvectors  form a system that is orthogonal and 
complete in the spaces  and . 

......0 22
1

2
1 ≤≤≤≤< kωωω ∞→2

kω
∞→k )(ku

0
ρH 1

cH

Theorem 2. (The Courant—Fisher minimax principle). 

      
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

==
∈≠∈−

)(minmax
121 0;),(~

 ,0,...,,

2
11

121

v
wv

vvwww
R

,...,k-,j
HH

k

j

uuk

ρ

ω

where ),(~/),(~)( vvvvv ρcR =  is the Rayleigh quotient. 

We observe that the orthogonality conditions in Theorem 1 can be presented in the forms 

0),( 0
)()( =

ρH
ji uu ,  , 0),( 1

)()( =
cH

ji uu ji ≠ ,    

and also in the extended writing 

0),(),( )()()()( =+ jiji ec uuu ϕ ,      

0),(),( )()()()( =+− jijie ϕϕκϕ u ,     

where ji ≠ , , . )()( ii Au=ϕ )()( jj Au=ϕ

Also in (Nasedkin, 2013) a number of theorems that establish the dependencies of 
eigenfrequencies of piezoelectric nanodimensional bodies were formulated with account for 
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surface stresses and dielectric films and with the change of the mechanical and electric 
boundary conditions and material parameters. 

Thus, the following theorems hold. 

Theorem 3. The natural frequencies kω  for the eigenvalue problem with account for surface 
stresses are not less than the corresponding natural frequencies kufω  for the problem without 

account for surface stresses, i.e.  for 22
kkuf ωω ≤ k  ∀ . 

Theorem 4. The natural frequencies kω  for the eigenvalue problem with account for surface 
electric charges are not greater than the corresponding natural frequencies kf ϕω  for the 

problem without account for surface electric charges, i.e.  for . 22
kfk ϕωω ≤ k  ∀

In (Belokon, 1996, Nasedkin, 2013) we also investigate the natural frequencies under the 
changes of certain parameters of the problem. For the next theorems we will explicitly point 
these changes in the formulations of the theorems, and all the variables related to the modified 
problems will be marked by subscripts  or by an asterisk. As above, for the initial and 
modified problems the parameters that are not specified in the theorem formulations are 
assumed to be identical.  

lm

We will call problem (37), (38) or (39), the -problem, emphasizing by this the presence of 
 areas ,  in contact with rigid plane punches and m  open-circuited 

electrodes , 

lm
l iuΓ } ..., ,2 ,1{ lJi p =∈

iϕΓ } ..., ,2 ,1{ mJi Q =∈ . 
We will consider two similar lm - and pm -problems, which differ solely in the number  and l
p  of contacting surfaces of  in (10) – (12). All the remaining input data from (1) – (17) in 

the - and 
iuΓ

lm pm -problems are assumed to be the same. 

Theorem 5. If , then the kth natural frequency Lpl ≤≤≤0 kmlω  of -problem is no less 

than kth natural frequency 

lm

kmpω  of pm -problem, i.e.  for 22
kmpkml ωω ≥ k  ∀ . 

Note that in conditions of Theorem 5, we do not change the boundary uΓ . When passing from 
lm-problem to pm-problem, we change only the conditions of fixed boundary to the 
conditions of contact with punches on the parts of iuΓ . 

We now consider two similar lm - and -problems, which differ solely in the number  and 
 of open-circuited electrodes of  in (15) – (17). 

nl m
n iϕΓ

Theorem 6. If , then the kth natural frequency Mnm ≤≤≤0 kmlω  of the -problem is no 

greater than the kth natural frequency 

lm

knlω  of the ln-problem, i.e.  for . 22
knlkml ωω ≤ k  ∀

For the next theorems we missing the subscripts , because for two compare problems the 
collections of elements in  and 

lm
} ..., ,2 ,1{ lJ p = } ..., ,2 ,1{ mJQ =  are the same. 

Theorem 7. If for two problems the rigid fixed boundaries and the boundaries, contacting with 
the punches, are such that , uu *Γ⊇Γ iuiu *Γ⊇Γ , Li  ..., ,2 ,1 ,0= , then we have  for 

. 

2
*

2
kk ωω ≥

k  ∀
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Theorem 8. If for two problems the elastic moduli, the piezomoduli, the densities of 
piezoelectric material and the inertia moments of the punches are such that ),(~),(~

* vvvv cc ≥ , 
),(~),(~

* vvvv ρρ ≤  for , then  for 1 uH∈∀ v 2
*

2
kk ωω ≥ k  ∀ .  

Theorem 9. If the electrode boundaries of two problems are such that , ϕϕ *Γ⊇Γ ii ϕϕ *Γ⊇Γ , 

, then we have  for Mi  ..., ,2 ,1 ,0= 2
*

2
kk ωω ≤ k  ∀ . 

Theorem 10. If the permittivities of two problems are such that ),(),( * χχκχχκ ≥  for 
, then  for . 1 ϕχ H∈∀ 2

*
2

kk ωω ≤ k  ∀

Now we will summarize the results of Theorems 5 – 10. 

If on certain areas of iuΓ  we replace the boundary conditions of rigid clamping (13) by the 
contact boundary conditions (10)–(12), then, by Theorem 5, the natural frequencies can only 
decrease. 

On the other hand, if on certain areas of iϕΓ  we replace the boundary conditions for the 
electric potential of zero (17) with electric boundary conditions of contact type (15), (16) for 
open-circuited electrodes, then by Theorem 6 the natural frequencies can only increase. 

Note that the natural frequencies in the problem with all operation short-circuited electrodes 
are usually named as electric resonance frequencies, while the natural frequencies in the 
problem with some open-circuited electrodes are usually named as electric antiresonance 
frequencies. Therefore, Theorem 6 also asserts that electric antiresonance frequencies are not 
less than the electric resonance frequencies with the same order numbers. 

By Theorems 7 and 8, a reduction in the boundaries iuΓ  or a specific reduction in the elastic 
moduli and an increase in the density or in the massive characteristics of punches can lead 
only to a decrease in the natural frequencies. 

Conversely, by Theorems 9 and 10, a reduction in the electrode boundary  or a specific 
reduction in the permittivity moduli can lead only to an increase in the natural frequencies. 

iϕΓ

We note that the results of theorems 5 – 10 are valid for both problems with and without 
account for surface effects. 

Comparing the effects reflected in Theorems 3, 5, 7, 8 and 4, 6, 9, 10, we can conclude that a 
similar change in the mechanical and electric boundary conditions or in elastic and 
permittivity moduli leads to an opposite change in the natural frequencies. 

 

FINITE ELEMENT APPROXIMATIONS 
For numerical solution of the harmonic problems (29), (30) (or of the eigenvalue problems) 
we can use classical technique of finite element analysis. Let hΩ  be the region occupied by 
the corresponding finite element mesh Ω⊆Ωh , , where ke

kh Ω∪=Ω keΩ  is separate finite 
element with number . At the boundary k hh Ω∂=Γ  we select the regions , σhΓ iuhΓ , 

, , Li  ..., ,2 ,1 ,0= DhΓ ihϕΓ , , that approximate the corresponding boundaries 

, , , . Then on  the finite functional spaces ,  can be introduced 

analogously to spaces , . 

Mi  ..., ,2 ,1 ,0=

σΓ iuΓ DΓ iϕΓ hΩ 1
uhH 1

ϕhH
1
uH 1

ϕH
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We will search the approximate solution 00 uu ≈h , 00 ϕϕ ≈h  of the problem (29), (30) on the 

finite element mesh  in the form ke
kh Ω∪=Ω

UNxu ⋅= T
uh )(0 , ,   (40) ΦNx ⋅= T

h ϕϕ )(0

where  is the matrix of the form functions (basis functions) for the displacements,  is 
the row vector of the form functions for electric potential, U ,  are the global vectors of 
nodal values for displacements and electric potential, respectively. 

T
uN T

ϕN
Φ

The projection functions ,  can be presented in the form 1
uH∈v 1

ϕχ H∈

UNxv δ⋅= T
u)( , .   (41) ΦNx δχ ϕ ⋅= T)(

According to the conventional finite element technique we will write the weak setting of the 
problem (29), (30) in finite spaces  и  for the region  with 
corresponding boundaries. Substituting (40), (41) in the problem (29), (30) for , we will 
have 

1
uhH 1

ϕhH ke
kh Ω∪=Ω

hΩ

uuuu
s
duuduuP

p
duud jjjj FΦKUKKMM =⋅+⋅+++++−++− ΓΩ ϕωβωβωαωωαω ])1()1()()[( 22

(42) 

ϕϕϕϕϕϕ ωςως FΦKKUK =⋅++++⋅− Γ
−

Ω
− ])1()1[( 11 s

dd
T
u jj ,  (43) 

where , , , , 

,  are the global finite element matrices obtained from the 

corresponding element matrices as the result of the assembly procedure (∑ ), and  is 
the matrix of punch mass and inertia characteristics. 

ek

uu

a
kuu ∑= MM

ek

uu

a
kuu ΩΩ ∑= KK

ek

uu

a
kuu ΓΓ ∑= KK

ek

u

a
ku ϕϕ ∑= KK

eka
k ϕϕϕϕ ΩΩ ∑= KK

eka
k ϕϕϕϕ ΓΓ ∑= KK

a
k uuPM

According to (20)–(23), the element matrices are in the following form 
 

Ω⋅= ∫Ω deT
u

e
u

ek
uu ek

NNM ρ ,   ,   , (44) Ω⋅⋅= ∫ΩΩ de
u

eT
u

ek
uu ek

BcBK Ω⋅⋅= ∫ΓΓ de
us

seT
us

ek
uu ek

BcBK
τ

Ω⋅⋅= ∫Ω deTeT
u

ek
u ek ϕϕ BeBK , , , (45) Ω⋅⋅= ∫ΩΩ deeTek

ek ϕϕϕϕ BκBK Ω⋅⋅= ∫ΓΓ de
s

seT
s

ek
ek
D

ϕϕϕϕ BκBK
eT
u

se
us NLB ⋅∇= )( )(

)( ,  ,    (46) eTse
s ϕϕ NB )(
)( ∇=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∂∂∂
∂∂∂
∂∂∂

=∇
000

000
000

)(
)(

1
)(

2
)(

3

)(
1

)(
3

)(
2

)(
2

)(
3

)(
1

)(

sss

sss

sss

sTL , 
r

nii
s

i ∂
∂

−∂=∂ )( , , (47) 3 ,2 ,1=i

where ,  are the edges of finite elements facing the regions ,  with given 
surface effects, ,  are the matrices and row vectors of approximating basis functions, 
respectively, that are defined at separate finite elements. 

ke
τΓ

ke
DΓ τhΓ hDΓ

eT
uN eT

ϕN

In (44) – (47) we used matrix-vector notations: c ,  are 6x6 matrices of elastic stiffness bulk 
and surface modules, ;  is 3x6 matrix of piezomoduli, ; 

sc
)()( s

ijkl
s cc =αβ e ikli ee =β 6 ,... ,1, =βα ; 
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3 ,2 ,1 , , , =lkji  with the correspondence law )( ji↔α , )( lk↔β , , , 
, , 

)11(1↔ )22(2 ↔
)33(3↔ )32()23(4 =↔ )31()13(5 =↔ , )21()12(6 =↔ . 

We note that in (42) – (47) the global and element matrices of mass and stiffness , , 
,  and nodal force vector  are formed in the same way as for purely elastic body, 

and the matrices , , ,  and nodal force vector  are identical to the 

corresponding matrices and vector for piezoelectric bodies. The matrices ,  and 

,  are defined by the surface stresses and surface electric charges, respectively. 
These matrices are analogous to the stiffness matrices for surface elastic membranes and the 
matrices of dielectric permittivities for surface dielectric films. Hence, for implementing the 
finite element piezoelectric analysis for the bodies with surface effects it is necessary to have 
surface structural membrane elements and surface finite elements of dielectric films along 
with ordinary solid piezoelectric finite elements. 

uuM ek
uuM

uuΩK ek
uuΩK uF

ϕuK ek
uϕK ϕϕΩK ek

ϕϕΩK ϕF

uuΓK ek
uuΓK

ϕϕΓK ek
ϕϕΓK

We can conclude that the harmonic and modal analysis technique for the piezoelectric bodies 
with surface effects can repeat similar technique for piezoelectric bodies without surface 
effects. In particular, the same solvers for eigenvalue problems can be used to determine 
practically important frequencies of electric resonances and antiresonances (see for example 
(Iovane, 2010)). 

Thus, for modal analysis with , 0====== s
dd

s
dd

p
dd ςςββαα 0=uF , , the system 

(42), (43) is the generalized eigenvalue problem  
0=ϕF

UMΦKUK ⋅=⋅+⋅ uuuuu
~2ωϕ ,    (48) 

0=⋅+⋅− ΦKUK ϕϕϕ
T
u ,     (49) 

where 

 uuPuuuu MMM +=~ , uuuuuu ΓΩ += KKK , ϕϕϕϕϕϕ ΓΩ += KKK .   

Eigenvalue problem (48), (49) can be represented in the form 

UMUK ⋅=⋅ uuuu
~~ λ , ,      2ωλ =

where 
T
uuuuuu ϕϕϕϕ KKKKK ⋅⋅+= −1~ .       

It is obvious, that the generalized stiffness matrix uuK~  and the total mass matrix uuM~  are 

positive defined ( 0~ >uuK , 0~ >uuM ). Then, the eigenvalues  ( ;  is the 

order of matrices 

2
kk ωλ = nk  ,... 2, ,1= n

uuK~  and uuM~ ) are real and positive. The eigenvectors, corresponding to 
them, which we will denote by , form basis in kW nR . The system of these eigenvectors  

can be chosen orthonormal with respect to the total mass matrix 
kW

uuM~  and orthogonal with 

respect to the generalized stiffness matrix uuK~  

 mkmuu
T
k δ=⋅⋅ WMW ~ ,  mkmmuu

T
k δω 2~ =⋅⋅ WKW .  (50) 
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Note that the indicated properties of eigenvalues and eigenvectors are the discrete variants of 
the corresponding continual properties established in Theorem 1. 

By using the orthogonality relations (50) we can apply the mode superposition method for 
solution of harmonic problem for the more important case , . For 
such values of damping coefficients the system of finite element equations has the following 
structure 

p
dd αα = s

dd
s
dd ςςββ ===

uuuuduud jj FΦKUKM =⋅+⋅+++− ϕβωωαω ])1(~)[( 2 ,     

ϕϕϕϕ ωβ FΦKUK =⋅++⋅− −1)1( d
T
u j ,     

or, in the reduced form  

uuuuuuu j FUKCM ~]~~~[ 2 =⋅++− ωω ,    (51) 

)()1( 1
ϕϕϕϕωβ FUKKΦ +⋅⋅+= − T

udj ,    (52) 

where uuduuduu KMC ~~~ βα += , ϕϕϕϕωβ FKKFF ⋅⋅+−= −1)1(~
uduu j . 

Thus, we will find the solution of problem (51) in the form of an expansion in eigenvectors 
(modes)  of eigenvalue problem (48), (49)  kW

 ∑ =
=

n

k kkz
1

WU .     (53) 

Substituting (53) into (51) and multiplying the obtained equation scalarly by  and taking 
into account the orthogonality relations (50), we obtain 

T
mW

 k
kkk

k P
j

z
ωωξωω 2

1
22 +−

= , u
T
kkP FW ~⋅= , 

22
1 k

d
k

dk
ωβ

ω
αξ += .  (54) 

Thus, using the method of mode superposition, the solutions of the harmonic problems are 
determined by (53), (54) and (52). 

The advantages and disadvantages of the mode superposition method are well known from 
experience of solving problems of structural analysis. Consequently, an important advantage 
of the method is the possibility of a direct determination of the damping coefficient kξ  of the 
individual modes without using the last formula from (54). These factors can be specified 
from the experimentally measured value of the mechanical quality factor  of the mode with 
number : 

kQ
k )2/(1 kk Q=ξ . 

 

NUMERICAL RESULTS 
As an example we consider the problem of natural oscillations of a longitudinally polarized 
piezoelectric rod with a circular cross-section made of zinc oxide (ZnO). We adopt that the 
rod has the length  (m) and the radius  (m). For zinc oxide (which is 
6mm-class material) we set the following bulk moduli (Dieulesaint, 1974): , 

, , , ,  (N/m

6101 −⋅=l 61005.0 −⋅=R
310676.5 ⋅=ρ

11
11 10097.2 ⋅=Ec 11

12 10211.1 ⋅=Ec 11
13 10051.1 ⋅=Ec 11

33 10109.2 ⋅=Ec 11
44 10425.0 ⋅=Ec 2), 

, ,  (Cl/m61.031 −=e 14.133 =e 59.015 −=e 2), , ,  011 38.7 εε =S
033 83.7 εε =S 12

0 1085.8 −⋅=ε
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(F/m). We refer the rod to the cylindrical coordinate system zOrθ , directing z -axis along the 
symmetry axis of the rod and choosing the coordinate system origin to lay in the plane of the 
lower end of the rod. We will assume that the ends of the rod lz =  and  are covered 
with electrodes, for the upper electrode 

0=z
0V=ϕ  (i.e., )exp(0 tjV ω ), and for the lower electrode 

0=ϕ  in the harmonic problem. For determination of the electric resonance frequencies  
(

krf
)2/( πω=f ) from the eigenvalue problem, we assume that 00 =V . Here, on the upper 

electrode  the boundary conditions (15), (16) with lz = 01 =Q  are satisfied for the eigenvalue 
problem of determination of the electric antiresonance frequencies . The lower end of the 
rod  is considered to be rigidly fixed, and the upper end 

kaf
0=z lz =  is covered by rigid punch 

with mass . We will also assume that the lateral surface 2/2)1(
0 lRM πρ= Rr = , lz ≤≤0  is 

the surface  with , DΓ=Γσ 0=Γp 0=Γq  in (7), (14), respectively.  

In order to illustrate theorems 3 and 8 let us compare the first two frequencies of electric 
resonance and antiresonance at the absence and the presence of the surface stresses and under 
the increase of the stiffness modules of the surface membrane that define the surface stresses. 
For both eigenvalue problems we do not take into account the effect of the dielectric films. 

These and further problems on the natural frequencies will be solved as axisymmetric 
problems using ANSYS finite element software. We divide the meridian section of the rod 
into quadrilateral eight-node finite elements PLANE13 with the options for axisymmetric 
piezoelectric analysis. Let us choose the number of finite elements along the radius to be 
equal to 30, and along the rod length to be equal to 600. We note that, as the computations 
have shown, such sufficiently fine mesh provided enough accuracy of the computations under 
different variations of the input parameters in all the examples considered. To model surface 
stresses on the lateral surface  we place axisymmetric elastic shell finite elements 
SHELL208 with options of only membrane stresses. Such membrane elements will 
approximate the boundary conditions (7) with the constitutive equations (8) with appropriate 
choice of elastic modules of membrane and its thickness. If we adopt that the surface elastic 
modules  are the elastic modules of isotropic body, than it is enough to set only the surface 
elastic Young's module  and surface Poisson's ratio 

σΓ

sc
sE sν . Then for equivalent elastic 

membrane and the corresponding membrane finite elements in ANSYS finite element 
package it is necessary to set the Young's module of the membrane , the Poisson's ratio of 
the membrane 

mE

mν  and the thickness of the membrane  so that the equalities , mh mms EhE =

ms νν =  take place. Therefore, for the equivalent membrane the values  and  are not 
significant separately but in their multiplication 

mE mh

mms EhE = . Formally putting , we will 
set the surface Young's module  in the form 

lhm =

sE mms EhE = , , varying the 

proportion ratio . For the computations we set that  (N/m
0EkE sm =

sk 11
0 102 ⋅=E 2), 3.0=sν . 

We note that to insure the accuracy of the finite element computations in ANSYS due to the 
smallness of the geometric sizes of the rod here it is convenient to transfer to dimensionless 
coordinates and parameters that can be introduce as following: l/~ uu = , l/~ xx = , 

)/(~ lEdϕϕ = , EEE c33/~ cc = , E
d cE 33/~ ee = , SSS

11/~ εεε = , Ec33/~ σσ = , dE/~ EE = , E
d cE 33/~ DD = , 

dTωω =~ , )/(~ 3)1(
0

)1(
0 lMM ρ= , , E

d vlT 3/= ρ/333
EE cv = , SE

d cE 1133 /ε= . Then the problem can 
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be solved in dimensionless form for the variables marked with symbol “tilde”, and after 
solving this problem we can return to dimensional quantities. 

Fig. 3 (a) illustrates the graphs of the dependencies of the first two electric resonance 
frequencies  and  on the coefficient , plotted on the x-axis in a logarithmic scale, i.e. 

at , , , , etc. As it follows from theorems 3, 8, under the increase of 
elastic stiffnesses of the surface member the natural frequencies also increase, and they 
increase considerable at . If along with the electric resonance frequencies we find the 
electric antiresonance frequencies  and , then we can find dynamic frequency 

coefficients of electromechanical coupling by formulas 

1rf 2rf sk
−∞== 100sk 610− 410− 210−

210−≥sk

1af 2af
2)/(1 iairid ffk −= , . These 

coefficients are responsible for electric activity of the corresponding oscillation modes and for 
effectiveness of the mechanical and electric energy transformation. The corresponding graphs 
of the Dependence of the electromechanical coupling coefficients  on  are shown in 
Fig. 3 (b).  

2 ,1=i

idk sk

As it can be seen, for the example considered the electromechanical coupling coefficient  
decreases with the increase of the value of surface stiffness, also more considerably at 

. This property is quite expected for the example considered, but in general it does 
not follow from the established theorems and for other problems and oscillation modes can 
not take place, as for example for coupling coefficient . 

1dk

210−≥sk

2dk

 
Fig. 3. Resonance frequencies  (a) and coupling coefficients  (b)  irf idk

vs. stiffness coefficient . sk

 

Account of surface charges and dielectric films is illustrated by Fig. 4 for the problems 
without surface stresses. Here for computations the simulation of the dielectric film was 
implemented by adding to the edge Rr = , lz ≤≤0  the dielectric layer consisting of finite 
elements PLANE13 with options of axisymmetric piezoelectric analysis at negligibly small 
elastic stiffnesses and piezomoduli. Basic dielectric permittivities of three-dimensional 
dielectric layer were set as follows: , ,  (F/m). Therefore, 0011 =

vε 0022 38.7 εε =v
0033 83.7 εε =v
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basic dielectric permittivities along the radial axis (axis 1) were set to be zero and the other 
values coincided with the dielectric permittivities of the material ZnO. Thickness  of the 

dielectric layer was assumed to be equal to  (m). Such layer simulates the dielectric 
film and boundary conditions (14) with surface dielectric permittivities ,  

when , 

fh
8101 −⋅

v
iif

s
ii h εε = 3 ,2 ,1=i

v
iif

v
ii k 0εε = 1=fk . Further in numerical computations the multiplier  was being 

changed from 0  to , and accordingly the dielectric permittivities  were being changed. 
The results of the computations are shown in Fig. 4, where Fig. 4 (a) illustrated the graphs of 
the dependencies of the first two electric resonance frequencies  and  on coefficient 

, plotted along the horizontal axis in logarithmic scale, and Fig. 4 (b) illustrated the graphs 
of the dependency of the electromechanical coupling coefficients  on . As it follows 
from theorems 4, 10, with the increase of dielectric permittivities of surface film the natural 
frequencies decrease. A small decrease of the resonance frequencies can be explained by 
small dielectric permittivity coefficients and small piezomoduli for piezoelectric material zinc 
oxide ZnO. As it is seen from Fig. 4 (b), for the example considered the electromechanical 
coupling coefficients decrease with the increase of the variable  faster than the resonance 
frequencies. 

fk
410 v

iiε

1rf 2rf

fk

idk fk

fk

 
Fig. 4. Resonance frequencies  (a) and coupling coefficients  (b)  irf idk

vs. permittivity coefficient . fk

 

Note that similar results and the results illustrating the effect of the mechanical and electrical 
boundary conditions for the eigenvalue problem for nanodimensional rod without a rigid 
punch are presented in (Nasedkin, 2013).

We can obtain the analogous results from solution of harmonic problem. For example, Fig. 5 
demonstrates the electric admittance 00 /2 VQfjY π= , 10 =V  (V) versus frequency near first 
resonance frequency for considered piezoelectric rod at the absence and the presence of the 
surface stresses. For this case we assume the following frequency-independent damping 
properties: , , , . The hard curve (1) 0= 0== s

dd ςς )/( fd
s
dd πξββ == -3101.25 ⋅=dξ= p

dd αα
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in Fig. 5 corresponds to magnitude of admittance for the road without surface stresses, and the 
dashed curve (2) is related to magnitude of admittance for the road with surface stresses when 

. It can easily be seen from Fig. 5 that the resonance frequencies (maximum ) 
and the antiresonance frequencies (minimum ) correspond to 

210−=sk || Y
|| Y similar results, obtained 

from the solution of eigenvalue problem (Fig. 3 (a) for the same values of sk ).  

 

 
Fig. 5. Magnitude of electric admittance vs. frequency. 

 

CONCLUSION 
This paper has considered the harmonic and eigenvalue problems for piezoelectric 
nanodimensional bodies in the framework of the linear piezoelasticity theory with damping 
properties and with account for surface effects induced by surface stresses and surface 
dielectric films. 

Classical and generalized settings of the harmonic problems for piezoelectric 
nanodimensional bodies with damping properties, boundary conditions of contact type and 
surface effects were formulated in expanded and reduced forms. For generalized settings the 
corresponding functional spaces were introduced. It was proved that the spectrum for the 
eigenvalue problem was discrete and real and the eigenvectors were orthogonal. 

The theorems that establish the dependencies of natural frequencies were formulated with 
account for surface stresses and surface dielectric films, and the change of the rigidly fixed 
boundaries, boundaries of contact type, boundaries with electrodes and material parameters of 
piezoelectric nanosize bodies.  

It was noted that the same changes of mechanical and electric boundary conditions and 
changes of stiffness characteristics and dielectric permittivities lead to the opposite changes in 
the natural frequencies. All dependencies were established for the piezoelectric bodies 
without surface effects, as well as for the bodies with account for surface stresses and surface 
dielectric films. 
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Finite element approximations and the corresponding generalized matrix problems were 
suggested for numerical solution of the harmonic and spectral problems for piezoelectric 
bodies with surface effects. The results were illustrated with a numerical example for 
obtaining the natural frequencies and harmonic vibrations of nanosize piezoelectric rod made 
of zinc oxide under different varied parameters of the problem. It was shown that here 
standard finite element software could be used with additional introduction of surface 
membrane elements and surface dielectric films in the computation models. 
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