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ABSTRACT 
The work discusses the uniform approaches to the effective modules determination of 
multiphase composite materials with the coupling of physic-mechanical fields based on the 
effective moduli method from the composite mechanics, modeling of the representative 
volumes with account for microstructure and the finite element technologies for solving the 
problems for the representative volumes. In order to provide an example, the models of 
porous piezoelectric, magnetoelectric, porous elastic and thermoelastic media are considered. 
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INTRODUCTION 
In the recent time there has been observed an increased interest to the investigations of 
composite materials of complex structure that exhibit very effective properties for many 
practical applications. For example, porous piezoelectric ceramics have extraordinary high 
volumetric piezosencitivity, low acoustic impedance and extended frequencies bandwidth. In 
connection to this, the use of porous piezocomposite materials enables to improve 
considerably the main parameters of ultrasonic piezo emitters. Two-phase magnetoelectric 
composites consisting of piezo- and magnetoactive phases demonstrate the ability to mutual 
transformation of magnetic and electric fields, at that each single phase does not have such 
property. Modern magnetoelectric composites have high effectiventess of the magnetoelectric 
transformation, relatively high temperatures of phase transitions and considerable 
technological resource. The problems of determination of effective properties still remain 
actual for more traditional composites with field coupling, for example, thermo- and 
poroelastic porous bodies, especially with account for their microstructure. Mathematical and 
computer investigations of composite materials of complex structure enable to explain and 
simulate some of their important characteristics and predict the effectiveness of different 
relations and structure couplings of constitutive phases. 

In present paper we have developed the effective moduli method and finite element technique 
for porous elastic materials, thermoelastic, piezoelectric and magnetoelectric 
(electromagnetoelastic) composites. 

 

THE MODELS OF MAGNETOELASTIC AND ELECTROELASTIC 
(PIEZOELECTRIC) MATERIALS 
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Let Ω  be a representative volume of multiphase composite heterogeneous body, Ω∂=Γ  is its 
boundary, n  is the outward unit normal vector, },,{ 321 xxx=x  is the vector of the special 
coordinates. Further we will use these notations for all composite materials under 
consideration.  

In the framework of the static theory of magnetoelectroelasticity the displacement vector u , 
the electric potential ϕ  and the magnetic potential φ  for heterogeneous magnetoelectric 
material in the volume Ω  should satisfy the following system of differential equations 

0=⋅∇ σ , 0=⋅∇ D , 0=⋅∇ B ,    (1) 
HqEeεcσ ⋅−⋅−⋅⋅= **, EHHE ,     (2) 
HαEεεeD ⋅+⋅+⋅⋅= SHSH , ,     (3) 
HμEαεqB ⋅+⋅+⋅⋅= ESSE ,* ,     (4) 

)(
2
1 *uuε ∇+∇= , ϕ−∇=E , φ−∇=H    (5) 

Here (1) are the field equations, (2) – (4) are the constitutive equations, σ  is the stress second 
rank tensor, D  is the vector of electric displacement (electric induction), B  is the vector of 
magnetic induction, HE ,c  is the forth rank tensor of elastic stiffness, calculated at constant 
electric and magnetic fields, He  is the third rank tensor of piezomodules, calculated at 
constant magnetic field, Eq  is the third rank tensor of magnetostriction modules, calculated at 
constant electric field, HS ,ε  is the second rank tensor of dielectric permittivities, calculated at 
constant strains and magnetic field, Sα  is the second rank tensor of magnetoelectric coupling 
coefficients, calculated at constant strains, ES ,μ  is the second rank tensor of dielectric 
permittivities, calculated at constant strains and electric field, ε  is the strain tensor, E  is the 
electric field intensity vector, H  is the magnetic field intensity vector. 

For heterogeneous magnetoelectric medium its modules are the functions of coordinates, i.e. 
)(,, xcc HEHE = , )(xee HH = , )(xqq EE = , )(,, xεε HSHS = , )(xαα SS = , )(,, xμμ ESES = , and 

they can vary significantly in the volume Ω  for composite material. 

Magnetoelectric composites are of interest because they consist of two phases em Ω∪Ω=Ω : 
piezomagnetic phase mΩ  and piezoelectric phase eΩ , and these phases can be mixed 
together. We note that 0)( =xeH  and 0)( =xαS  for mΩ∈x , 0)( =xqE  and 0)( =xαS  for 

mΩ∈x , that is both phases separately do not have magnetoelectric coupling. However for 
composite magnetoelectric medium due to the coupling of the magnetic and mechanical fields 
at the piezomagnetic phase mΩ  and the coupling of the electric and mechanical fields at the 
piezoelectric phase eΩ  as the result we get the coupling of magnetic and electric fields that 
does not exist at each separate phase. Recently magnetoelectric composites became of interest 
to many researchers so the number of works devoted to the modeling of the effective 
properties of these composites has increased considerably (Challagulla, 2011; Dinzart, 2009; 
Lee, 2005; Lu, 2011; etc.). 

Piezoelectric composites are studied much better and have numerous practical applications 
(Rybyanets, 2010). The system of differential equations for piezoelectric materials is obtained 
as the special case of (1) – (3), (5), if we set 0)( =xqE , 0)( =xαS  and do not take into 
account the magnetic components. Then the remaining modules for piezoelectric composites 
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will also be the functions that vary strongly in Ω , i.e. )(, xccc EEHE == , )(xeee ==H , 
)(, xεεε SSHS == . The best known piezoelectric composites are related with piezoceramic 

materials. They are represented by the classes of various connectivity types, such as ceramics-
ceramics, ceramics-polymer and ceramics-pores (pore piezoceramics). It is also possible to 
obtain more complex structures, such as ceramics-polymer-pores. 

It is well known, that the connectivity of the composites play an important part in the 
determining their effective properties and main characteristics. The classification (Newnham, 
1986) became widely used for two-phase piezoelectric materials. According to this 
classification, the composite connectivity is written as nm − , where 3 ,2 ,1 ,0, =nm , at that 
the first number indicates the dimension of the main active (piezoceramic) phase whereas the 
second number indicates the dimension of the second phase (piezoceramics, polymer or pore). 
Here the dimension of the phase refers to the fact that this phase in the composite can be 
connected in one, two or three special dimensions or have no common points of contact with 
each other in the material volume (0-connectivity). In this work we restrict our attention to the 
consideration of mixture models of the composites of 3-0 and 3-3 connectivity. For the porous 
piezoceramics of these connectivity types in (Nasedkin, 2005, 2011; Domashenkina, 2011) 
the investigations on the applicability of the effective moduli method and finite element 
method for the correct determination of their effective constants were carried out. Further on 
it will be shown that the technologies developed according to (Nasedkina, 2012) can be 
applied for other multiphase composites. 

 

EFFECTIVE MODULI METHOD FOR MAGNETOELECTRIC COMPOSITES  
On the boundary Γ  of magnetoelectric composite body we will consider the mechanical 
stress vector p , the surface density of electric charges eq  and the surface density of magnetic 
charges mq  

σnp ⋅= , Dn ⋅−=eq , Bn ⋅−=mq .    (6) 

As usual, we will denote the volume-averaged quantities in the broken brackets 

∫Ω Ω
Ω

= d (...)1...  .     (7) 

Following a substantiation of a method of effective moduli for elastic media, for piezoelectric 
body we will formulate the auxiliary statements. These statements are proved under similar 
techniques, as for an elastic body (Pobedria, 1984). The following states are found on the 
basis of effective moduli theory. 

Lemma 1. These representations take place for volume averaging field characteristic by means 
of appropriate values on boundary Γ  

(a)  *)(
2
1 uuε ∇+∇=   ⇒ ∫Γ Γ+

Ω
= d *)*(

2
1 nuunε ,   (8) 

(b)  ϕ−∇=E , φ−∇=H  ⇒ ∫Γ Γ
Ω

−= d 1 ϕnE , ∫Γ Γ
Ω

−= d 1 φnH , (9) 

(c)  σnp ⋅= ; 0=⋅∇ σ  ⇒ ∫Γ Γ+
Ω

= d *)*(
2
1 xppxσ ,   (10) 
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(d)  Dn ⋅−=eq ;  0=⋅∇ D  ⇒ ∫Γ Γ
Ω

−= dqe 
1 xD ,    (11) 

(e)  Bn ⋅−=mq ;  0=⋅∇ B  ⇒ ∫Γ Γ
Ω

−= dqm 1 xB .    (12) 

◄ For proof statings (8)–(12) we can use component-wise notations, formulas (5) and Gauss 
divergence theorem: 

∫∫ ΓΩ
Γ+

Ω
=Ω+

Ω
= dununduu jiijijjiij )(

2
1)(

2
1

,,ε , 

∫∫ ΓΩ
Γ

Ω
=Ω

Ω
−= dndE iii ϕϕ

2
11

, , and similarly for iH . 

In addition for proof (10) – (12) we use the formulas  

ijjkikkjik xx σσσ += ,,)( ,  jiikjkkijk xx σσσ += ,,)( , 0, =kikσ ; jiij σσ =  ⇒  

2/])()[( ,, kijkkjikij xx σσσ += ,  

ijiiiji DxDxD += ,,)( ; 0, =iiD , and similarly for iji xB ,)( . 

Therefore, 

∫∫∫ ΓΓΩ
Γ+

Ω
=Γ+

Ω
=Ω+

Ω
= dxpxpdxnxndxx ijjiijkkjikkkijkjikij )(

2
1)(

2
1)(

2
1

, σσσσσ , 

∫∫∫ ΓΓΩ
Γ

Ω
−=Γ

Ω
=Ω

Ω
= dxqdxDndxDD jejii,ijii  1 1 )(1 , and similarly for iB .► 

 

Lemma 2. 

(a)  Let 
Γ

⋅= 0εxu  for Γ∈∀ x , where const*00 == εε . Then we have 0εε = . 

(b)  Let 
Γ

⋅−= 0Exϕ  for Γ∈∀ x , where const0 =E . Then we have 0EE = . 

(c)  Let 
Γ

⋅−= 0Hxφ  for Γ∈∀ x , where const0 =H . Then we have 0HH = . 

(d)  Let 
Γ

⋅= 0σnp  for Γ∈∀ x , where p  is the stress vector from (6) and const0 =σ . Then 

we have 0σσ = . 

(e) Let 
Γ

⋅−= 0Dneq  for Γ∈∀ x , where eq  is the surface density of electric charges from (6) 

and const0 =D . Then we have 0DD = . 

(f) Let 
Γ

⋅−= 0Bnmq  for Γ∈∀ x , where mq  is the surface density of magnetic charges from 

(6) and const0 =B . Then we have 0BB = . 

◄ For proof (a)–(f) we apply the corresponding statement (a)–(e) from Lemma 1 and transfer 
from integration on Γ  to integration on Ω  by Gauss divergence theorem.► 
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Lemma 3. 

(a) Let 
Γ

⋅= 0εxu  for Γ∈∀ x , where const*00 == εε , and the equilibrium equation 0=⋅∇ σ  

takes place. Then we have 2/2/ σεσε ⋅⋅=⋅⋅ . 

(b) Let 
Γ

⋅−= 0Exϕ  for Γ∈∀ x , where const0 =E , and the equation of quasielectrostatics 

0=⋅∇ D  takes place. Then we have 2/2/ EDED ⋅=⋅ . 

(c) Let 
Γ

⋅−= 0Hxφ  for Γ∈∀ x , where const0 =H , and the equation of quasimagnetostatics 

0=⋅∇ B  takes place. Then we have 2/2/ HBHB ⋅=⋅ . 

(d) Let 
Γ

⋅= 0σnp  for Γ∈∀ x , where const0 =σ , p  is the stress vector from (6), and the 

equilibrium equation 0=⋅∇ σ  takes place. Then we have 2/2/ σεσε ⋅⋅=⋅⋅ . 

(e) Let 
Γ

⋅−= 0Dneq  for Γ∈∀ x , where const0 =D , eq  is the surface density of electric 
charges from (6), and the equation of quasielectrostatics 0=⋅∇ D  takes place. Then we have 

2/2/ EDED ⋅=⋅ . 

(f) Let 
Γ

⋅−= 0Bnmq  for Γ∈∀ x , where const0 =B , mq  is the surface density of magnetic 
charges from (6), and the equation of quasimagnetostatics 0=⋅∇ B  takes place. Then we 
have 2/2/ HBHB ⋅=⋅ . 

◄ (a) If 
Γ

⋅= 0εxu  for Γ∈x , 0=⋅∇ σ , that it is correct the following sequence of identities 

∫∫∫ ΓΓΩ
=Γ⋅⋅⋅

Ω
=Γ⋅⋅

Ω
=Ω⋅⋅∇

Ω
=⋅⋅ ddd xεσnuσnσuσε 0)(

2
1)(

2
1

2
1

2
1  

εσεσεσxεσ ⋅⋅=⋅⋅Ω
Ω

=Ω⋅⋅
Ω

=Ω⋅⋅⋅∇
Ω

= ∫∫∫ ΩΩΩ 2
1

2
1

2
1)(

2
1

000 ddd . 

(b) If 
Γ

⋅−= 0Exϕ  for Γ∈x , 0=⋅∇ D , then =Ω∇⋅
Ω

−=⋅ ∫Ω dϕDED
2
1

2
1  

=Γ⋅⋅
Ω

=Γ⋅
Ω

−=Ω⋅∇
Ω

−= ∫∫∫ ΓΓΩ
ddd )(

2
1

2
1)(

2
1

0ExDnDnD ϕϕ  

EDEDEDExD ⋅=⋅=Ω⋅
Ω

=Ω⋅⋅∇
Ω

= ∫∫ ΩΩ 2
1

2
1

2
1))((

2
1

000 dd , and similarly for (c). 

(d) If 
Γ

⋅= 0σnp , 0=⋅∇ σ , then =Γ⋅⋅
Ω

=Ω⋅⋅∇
Ω

=⋅⋅ ∫∫ ΓΩ
dd uσnσuσε )(

2
1

2
1

2
1  

00000 2
1

2
1

2
1

2
1)(

2
1 σεσεσεσuuσn ⋅⋅=⋅⋅=Ω⋅⋅

Ω
=Ω⋅⋅∇

Ω
=Γ⋅⋅

Ω
= ∫∫∫ ΩΩΓ

ddd  

(e) If 
Γ

⋅−= 0Dneq , 0=⋅∇ D , then =Ω∇⋅
Ω

−=⋅ ∫Ω dϕDED
2
1

2
1  

=Γ⋅∇
Ω

−=Γ⋅
Ω

−=Γ⋅
Ω

−=Ω⋅∇
Ω

−= ∫∫∫∫ ΩΓΓΩ
dddd )(

2
1

2
1

2
1)(

2
1

00 ϕϕϕϕ DDnDnD  
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EDΕDD ⋅=Ω⋅
Ω

=Ω∇⋅
Ω

−= ∫∫ ΩΩ 000 2
1

2
1

2
1 ddϕ , , and similarly for (f).► 

 

In accordance with four equivalent fundamental forms of constitutive equations we will 
introduce the moduli of magnetoelectric medium: 

– HEε -form (2) – (4) in independent variables ε , E , H , 

– HEσ -form in independent variables ε , E , H  

HrEdσsε ⋅+⋅+⋅⋅= **, EHHT ,     (13) 
HγEεσdD ⋅+⋅+⋅⋅= THTH , ,     (14) 
HμEγσqB ⋅+⋅+⋅⋅= ETTE ,* ,     (15) 

and analogously for HDε , HDσ , BEε , BEσ , BDε , BDσ  -forms. 

Let Ω  be the representative volume of heterogeneous piezoelectric materials. We will 
determine the effective moduli HE ,~c , He~ , Eq~ , HS ,~ε , Sα~ , ES ,~μ  by the following technique 
similarly for elastic and piezoelectric composites (Nasedkin, 2011). 

We consider the static magnetoelectroelastic problem for representative volume Ω  with Eqs. 
(1) – (5) and the following boundary conditions 

0εxu ⋅= , 0Ex ⋅−=ϕ , 0Hx ⋅−=φ , Ω∂=Γ∈x .  (16) 

We call the problem (1) – (5), (16) the problem I and denote the solution of this problem by 
Iu , Iϕ , Iϕ . From the obtained solution and (2) – (5) we can find Iε , IE , IH , Iσ , ID  and 
IB , where )( II uεε =  and so on. Note, that from lemma 2 for the problem I the following 

relations take place 0
I εε = , 0

I HH =  and 0
I EE = . 

We supply in conformity to the initial heterogeneous medium some "equivalent" 
homogeneous medium with effective moduli HE ,~c , He~ , Eq~ , HS ,~ε , Sα~  and ES ,~μ . The 
constitutive equations for "equivalent" medium, analogous (1) – (4), are in the forms 

0
*

0
*

0
,

0
~~~ HqEeεcσ ⋅−⋅−⋅⋅= EHHE ,    (17) 

00
,

00
~~~ HαEεεeD ⋅+⋅+⋅⋅= SHSH ,    (18) 

0
,

0
*

00
~~~ HμEαεqB ⋅+⋅+⋅⋅= ESSE .    (19) 

For problem I we accept the following equations such as relations for definition of effective 
moduli from (17) – (19) 

0
I σσ = ; 0

I DD = , 0
I BB = .    (20) 

The moduli, found from these conditions, are marked with superscripts "I". Note, that with 
lemma 3 the average energies are equal for heterogeneous and for "equivalent" homogeneous 
magnetoelectric media 

2/)(2/ 000000
IIIIII HBEDεσHBEDεσ ⋅+⋅+⋅⋅=⋅+⋅+⋅⋅ .   (21) 
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Now, by using (17) – (20), we can select such boundary conditions, at which the obvious 
expressions for effective moduli are obtained. For example, we consider problem I (1) – (5), 
(16) with 

)(00 kmmk eeeeε += ε ;  00 =E , 00 =H ,   (22) 

where k , m  are some fixed numbers ( k , 3 ,2 ,1=m ); ke  are the unit vectors of Cartesian 
basis. Then, from (17) – (22) we obtain 

)2/(~
0

II, εσc ij
HE

ijkm = ; )2/(~
0

II εDe j
H
jkm = , )2/(~

0
II εBq j

E
jkm =   (23) 

If in the problem I (1) – (5), (16) we accept 

00 =ε ;  kE eE 00 = , 00 =H ,    (24) 

then from (17) – (20), (24) we find 

0
II /~ Eσe ij

H
kij −= ; 0

II, /~ EDj
HS

jk =ε , 0
II /~ EBj

S
kj =α .  (25) 

Finally, if in the problem I (1) – (5), (16) we accept 

00 =ε ;  00 =E , kH eH 00 = ,    (26) 

then from (17) – (20), (26) we obtain 

0
II /~ Hσq ij

E
kij −= ; 0

II /~ HDj
S
jk =α , 0

II, /~ HBj
ES

kj =μ .  (27) 

Note, that the quantities I
ijσ , I

jD  and I
jB  in (23), (25) and (27) are different, since they 

are calculated from the solutions of the problems I with different boundary conditions (16): 
(22), (24) and (26). 

However, for magnetoelectric media it is possible to suggest the other ways of introduction of 
effective moduli, considering the problems with other mechanical, electric and magnetic 
boundary conditions from lemma 2. Just, we can consider the following problems: 

—problem II with boundary conditions for stress vector p , electric potential ϕ  and magnetic 
potential φ  

0σnp ⋅= , 0Ex ⋅−=ϕ , 0Hx ⋅−=φ , Γ∈x ,    (28) 

—problem III with boundary conditions for displacement u , surface density of electric 
charges eq  and magnetic potential φ  

0εxu ⋅= , 0Dn ⋅−=eq , 0Hx ⋅−=φ , Γ∈x ,    (29) 

— problem IV with boundary conditions for stress vector p , surface density of electric 
charges eq  and magnetic potential φ  

0σnp ⋅= , 0Dn ⋅−=eq , 0Hx ⋅−=φ , Γ∈x ,   (30) 

— problems V – VIII with similar boundary conditions for problems I – IV, but with the 
change the boundary condition for magnetic potential φ  ( 0Hx ⋅−=φ , Γ∈x ) to the 
boundary condition for surface density of electric charges mq  ( 0Bn ⋅−=mq , Γ∈x ). 
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In the all these problems the field equations (1) of equilibrium, electrostatic and magnetostatic 
are considered. For problem I the constitutive equations (2) – (4) in the HEε -form are used 
and originally the effective moduli αHE ,~c , αHe~ , αEq~ , αHS ,~ε , αSα~  and αES ,~μ  are defined, 
where α  is the number of problem ( VIII ..., II, I,=α ). Respectively, for problem II the 
constitutive equations (13) – (15) in the HEσ -form are used and moduli II,~ HTs , II~Hd , II~Er , 

II,~ HTε , II~Tγ  and II,~ ETμ  are obtained; and analogously for problems III – VIII . 

Note, that from lemma 3 for the all these problems, similar for the problem I, the average 
energy is conserved, i.e. the relation (21) is satisfies with replace superscript "I" by "II", "III" 
etc. 

In any of these problems from obtained effective moduli we can find and another moduli from 
another constitutive equations for "equivalent" homogeneous medium. Eqs. (22) – (27) and 
similar Eqs. for another problems allow us to obtain a full set of effective moduli for 
magnetoelectric media with arbitrary anisotropy class. Use of different constitutive equations 
from eight types of problems can be useful for determination of effective moduli of the 
inhomogeneous structures making at work mainly one-dimensional or simple movements, for 
example, for rods, plates and disks, etc. 

 

RESULTS AND CONCLUSIONS 
In particular the theory of the effective moduli method for magnetoelectric composites with 
piezoelectric and piezomagnetic phases were developed. The basic propositions for the 
average field characteristics that generalize the approaches developed for the elastic and 
piezoelectric media were formulated. Eight static magnetoelectroelastic problems for a 
representative volume that allow finding the effective moduli of an inhomogeneous 
magnetoelectric composite were specified. These problems are different by the boundary 
conditions on the surfaces of the representative volume, which provide the constant gradients 
of field characteristics for the case of homogeneous media distribution: 1) mechanical 
displacements, electric and magnetic potentials linearly dependent on the coordinates; 2) 
mechanical displacements and magnetic potential linearly dependent on the coordinates and 
constant normal component of the vector of electric displacement; 3) constant stress vector 
and electric and magnetic potentials linearly dependent on the coordinates; 4) constant stress 
vector and constant normal component of the vector of electric displacement and magnetic 
potentials linearly dependent on the coordinates. In the four another problems the boundary 
conditions for magnetic potential are replaced by the conditions for constant normal 
component of the vector of magnetic flux density. Respective equations for calculation of the 
full set of the effective moduli for magnetoelectric media with arbitrary anisotropy were 
derived.  

In (Domashenkina, 2011; Nasedkin, 2011) various models of representative volumes with 
different connectivities were considered, including the models for the structures of highly 
porous materials with account for inhomogeneities of the properties for individual finite 
elements. Based on these approaches and using finite element method the effective modules 
for various magnetoelectric composites having wide range of the electric or magnetic volume 
fractions were calculated. 

The similar technics were applied for modeling of effective properties for porous elastic, 
thermoelastic and porous piezoelectric materials (Nasedkina, 2012). The finite element 
computations were made with the help of the finite element package ANSYS and special 



 Integrity, Reliability and Failure of Mechanical Systems 

IRF’2013  9

computer programs written in marcolanguage APDL ANSYS. Using the computation results 
the influence of different structures of the representative volumes and account for local 
inhomogeneities on the effective modules was analyzed (Nasedkin, 2005, 2011; 
Domashenkina, 2011). Also the comparison of the calculated main characteristics of the 
composites of complex structures with the known experimental data was made. 
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