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ABSTRACT 

The presented paper shows the development of mathematical model for the calculation of 
transport properties on the basis of statistical nano-mechanics and further analytical 
calculation of fluid flow in mini and micro-channels. 
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INTRODUCTION 

luid flow in channels, minichannels and microchannels is driven due to presence of  electric 
field, magnetic field or pressure driven flow and some other effects [1].   
 
Electrohydrodynamics (EHD)  known as electrokinetics, is the theory of the fluid dynamics of 
electrically charged fluids. It is the study of the motions of ionised particles or molecules and 
their interactions with electric fields and the surrounding fluid. For EHD flow we need low 
electrical conducting fluids such as organic fluids or alcohols [1]. Electrokinetic flow could be 
classified into the next different types: electrophoresis, electroosmosis, streaming potential 
and sedimental potential [1-5]. 
 
The fundamental concept for magnetohydrodynamics (MHD) is that magnetic fields can 
induce currents in a moving conductive fluid, which in turn creates forces on the fluid and 
also changes the magnetic field itself [2]. For MHD flows we need highly conductive fluids 
like plasmas, liquid metals, electrolytes and salt water. 
 
In the case if flow is transported by pressure differential we could call such phenomena like 
pressure hydrodynamics (PHD).  
 
Ferrohydrodynamics (FHD) is the theory of magnetic fluid flow. 
 
The term nanofluid is envisioned to describe a solid-liquid mixture which consists of a 
nanoparticles and a base liquid and this is one of new challenges for thermo-sciences provided 
by the nano-technology. The possible application area of nanofluids is in advanced cooling 
systems, in micro/nano elecctromechanical systems… The investigation of the effective 
thermal conductivity of liquid with nanoparticles attract much more interest experimentally 
and theoretically. The effective thermal conductivity of nanoparticle suspension can be much 
higher than for the fluid without nanoparticles. 
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Figure 1: Types of fluid flow 
 

Calculation of properties for nanofluids for real substances is possible by the classical and 
statistical mechanics. Classical mechanics has no insight into the microstructure of the 
substance. Statistical mechanics, on the other hand, calculates the properties of state on the 
basis of molecular motions in a space, and on the basis of the intermolecular interactions. The 
equations obtained by means of classical thermodynamics are empirical and apply only in the 
region under observation. The main drawback of classical thermodynamics is that it lacks the 
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insight into the substance of microstructure. Contrary to classical mechanics, statistical 
mechanics calculates the thermomechanic properties of state on the basis of intermolecular 
and intramolecular interactions between particles in the same system of molecules. It deals 
with the systems composed of a very large number of particles.  
In this paper are determined new constants for fluids. The results of the analysis are compared 
with experimental data and show a relatively good agreement. 
 

THE CALCULATION OF THERMAOPHYSICAL PROPERTIES FOR SOLIDS AND 
FLUIDS  

For  the calculation of transport properties for polyatomic molecules in principle, a quantum 
mechanical treatment of processes is necessary to account for the changes of internal state. In 
the presented paper will be presented Chung-Lee-Starling model (CLS) [3-4].  Equations for 
the viscosity and the thermal conductivity are developed based on kinetic gas theories and 
correlated with the experimental data. The low-pressure transport properties are extended to 
fluids at high densities by introducing empirically correlated, density dependent functions. 
These correlations use acentric factor , dimensionless dipole moment r and an empirically 
determined association parameters to characterize molecular structure effect of polyatomic 
molecules , the polar effect and the hydrogen bonding effect. In this paper are determined 
new constants for fluids.  
The dilute gas viscosity for CLS model is written as: 

    c2*2,2
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where  is in Pa s, M is the molecular mass in gmol-1, T is in K, (2,2) is a collision integral 
and  is the Lennard-Jones parameter. To make computerized calculations more convenient 
and to improve on the accuracy obtainable by linear interpolation of the tables we used 
Neufeld2 at al. empirical formulation, obtained on the basis of numerical simulations and 
interpolation procedure.  
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The factor Fc has been empirically found to be:14 
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where  is the acentric factor, r relative dipole moment and  is a correction factor for 
hydrogen-bonding effect of associating substances such as alcohols, ethers, acids and water. 
For dense fluids Eq. (1) is extended to account for the effects of temperature and pressure by 
developing an empirically correlated function of density and temperature as shown below: 
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The constants A1-A10 are linear functions of acentric factor, reduced dipole moment and the 
association factor 

 )i(a)i(a)i(a)i(aA 3
4

r210i ,i=1,10    (10) 
where the coefficients a0, a1, a2 and a3 are presented in the work of Chung at al. [3,4] 

 
THE CALCULATION OF EFFECTIVE VISCOSITY FOR NANOFLUIDS 

In nanoparticle fluid mixtures, other effects such as microscopic motion of particles, particle 
structures and surface properties may cause additional heat transfer in nanofluids. Nanofluids 
also exhibit superior heat transfer characteristics to conventional heat transfer fluids. One of 
the main reasons is that suspended particles remarkably increase thermal conductivity of 
nanofluids. The thermal conductivity of nanofluid is strongly dependent on the nano-particle 
volume fraction. So far it has been an unsolved problem to develop a sophisticated theory to 
predict thermal conductivity of nanofluids. The presented paper is the attempt to calculate 
thermal conductivity of nanofluid analytically. Hamilton and Crosser developed the model for 
the effective thermal conductivity of two-component mixtures as a function of the 
conductivity of the pure materials, the composition and shape of dispersed particles. The 
thermal conductivity can be calculated then with the next expression: 
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where  is the mixture thermal conductivity, 0 is the liquid thermal conductivity, p is the 
liquid thermal conductivity of solid particles,  is the volume fraction and n is the empirical 
shape factor given by, 


3

n             (12) 

where  is sphericity, defined as the ratio of the surface area of a sphere (with a volume equal 
to that of a particle) to the area of the particle.. The volume fraction  of the particles is 
defined as: 

3
p

p0

p d
6

n
VV

V  


          (13) 

where n is the number of the particles per unit volume and dp is the average diameter of 
particles. An alternative expression for calculating the effective thermal conductivity of solid-
liquid mixtures was introduced by Wasp [6]: 
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Comparison between Eq. (38) and Eq. (41) shows that Wasp model is a special case with the 
sphericity of 1.0 of the Hamilton and Crosser model. 
 
In nanoparticle fluid mixtures, other effects such as microscopic motion of particles, particle 
structures and surface properties may cause additional heat transfer in nanofluids. Nanofluids 
also exhibit superior heat transfer characteristics to conventional heat transfer fluids. One of 
the main reasons is that suspended particles remarkably increase thermal conductivity of 
nanofluids. The viscosity of nanofluid is strongly dependent on the nano-particle volume 
fraction. So far it has been an unsolved problem to develop a sophisticated theory to predict 
thermal conductivity of nanofluids. The presented paper is the attempt to calculate thermal 
conductivity of nanofluid analytically. Hamilton and Crosser developed the model for the 
effective thermal conductivity of two-component mixtures as a function of the conductivity of 
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the pure materials, the composition and shape of dispersed particles. It is well known that the 
earliest theoretical work on the effective viscosity was due to Einstein whose derivation led to 
the effective viscosity to be linearly related to the particle concentration: 
 

 5.21r            (15) 

where r is the relative viscosity defined as the ratio of the effective viscosity of the particle 
fluid-mixture to the viscosity of the fluid and   is the volumetric concentration of the 
particles. Equation (15) is applicable to suspensions with low particle concentrations (less 
then 2%). With help of exponential model we can obtain the next expression for the relative 
viscosity: 
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where  is called the exponent. If we choose =2, we obtain the result is very close to the 
result obtained by Ward (W), who suggested the following expression for spherical particles: 
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The presented equation is fitted with the experimental data for the concentration up to 35%. 
The viscosity of nanofluid is strongly dependent on the nanoparticle volume fraction. So far it 
has been an unsolved problem to develop a sophisticated theory to predict viscosity of 
nanofluids. The presented paper is the attempt how to calculate thermal conductivity of 
nanofluid analytically. Cheng and Law [6] developed the model for the effective thermal 
conductivity of two-component mixtures as a function of the viscosity of the pure fluid and 
the composition of particles and and exponent factor.  
The Cheng and Law or Ward models give very good results for two-phase flow with particles 
larger than 100 nm. For smaller particles the presented theory give wrong results with the 
deviation more than 100% in comparison with experimental results. The presented theoretical 
models for the calculation of the viscosity for nanofluids are only dependent on the viscosity 
of the liquid and their relative volume fraction, but not on particle size and the interaction 
between particles and the fluid.  
In convection heat transfer in nanofluids not only on the thermal conductivity but also on the 
other properties such as specific heat, dynamic viscosity, … are important for analytical 
prediction. We can mention the factors discussed in the literature [1-10] as possible 
mechanisms for the anomalous enhancement of viscosity: the motion of nanoparticle, 
molecular level layering of the liquid at the liquid-particle interface and ballistic phenomena 
in nanoparticles, the effects of clustering in nanoparticles.  
As in the case of analytical calculation of thermal conductivity, for the calculation of viscosity 
of nanofluids we have made the hypothesis that the most important additional contribution is 
liquid layering.  With help of Eq. (9) we can express the renewed Ward model (RW): 
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For the further development of mathematical model I have used Eqs. (6) and (10) for the 
calculation of thermal conductivity and viscosity. In the presented model we have studied 
nanofluid with Al2O3 nanoparticles and ethylene glycol as the reference fluid. The described 
nanofluid is very perspective for refrigeration application. 
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The mean velocity within the microchannel becomes: 
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Non-dimensionlizing this result (z*=z/a, u*=u/ub) we obtain the next equation: 
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Without electromagnetic effects, equations (24-26) transforms into the following expressions: 
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For the circular micro channel without electromagnetic forces, the governing equation is 
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Solving the differential equation subject to boundary conditions, 
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If we wish to calculate the velocity profile for MHD flow in circular channel  we have to 
solve the next differential equation: 
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The analytical solution of equation (12) is slightly more complicated. We have obtained the 
next solution of differential equation with the boundary conditions (u(R)=0, uʹ(0)=0): 
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Previous investigations of the pressure gradient for electro-osmotic liquid flow in 
microchannels have generally used no-slip conditions, while for gas flow in microchannels, 
the slip boundary condition is taken into account. Some previous experimental investigations 
have demonstrated the existence of liquid slip on a microchannel wall [18,19].  In addition 
some previous studies were numerically performed considering a slip velocity for a liquid 
flow in a microchannel made from hydrophobic surfaces, taking into accountelectric field and 
pressure gradient [8,10]. Also, some previous studies predicted numerically a slip velocity for 
liquid flow in a microchannel made from hydrophobic surfaces, taking into account an 
imposed electric field and a pressure gradient without heat transfer. On the basis of a slip 
velocity profile and boundary conditions in liquid microchannel flow, the velocity profile can 
be determined by 
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The coefficient β is called the slip coefficient. If we define a reduced slip coefficient as 
∗ߚ ൌ  :we obtain the following equations ,ܽ/ߚ
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Fig. 6: Velocity profile with slip (β*=0.5) at MH=5 (blue line), MH=10 (red line) and  MH=30 
(green line)in rectangular minichannel with slip β*=0.5. 

 

 
Fig. 7: Velocity profile in circular microchannel without electromagnetic effects (blue line), 
with slip with slip β*=0.35 (red line) and with slip β*=0.7 (green line). 
 

0.0 0.5 1.0 1.5 2.0
0.75

0.80

0.85

0.90

0.95

1.00

1.05

z

a

u u0

-1.0 -0.5 0.0 0.5 1.0

0.0

0.5

1.0

1.5

2.0

r

R

u u0



 Integrity, Reliability and Failure of Mechanical Systems 

IRF’2013  11

 

Fig. 8: Velocity profile with slip (β*=0.5) at MH=5 (blue line), MH=10 (red line) and  MH=30 
(green line)in circular microchannel minichannel without slip. 
 

 
Fig. 9: Velocity profile with slip β*=0.5 at MH=5 (blue line), MH=10 (red line) and  MH=30 
(green line)in circular microchannel.  
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