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ABSTRACT 

Identification of thermal characteristics of building materials under hard experimental condi-
tions cannot be done using standard laboratory techniques. However, the data from non-
stationary hot-wire (or similar) experiments, supported by recent European standards, are ex-
pected to give reasonable effective values of (at least) heat conductivity and heat capacity 
under the assumption of validity of a (semi)linear macroscopic heat transfer equation with 
initial and boundary conditions. This paper demonstrates i) how some results of this type can 
be obtained thanks to the proper study of analytical solutions with exponential integrals (hid-
den in standards), ii) how such approach can be improved using the system of Bessel func-
tions, iii) what difficulties must be overcome in the general case, applying the least squares 
and conjugate gradient techniques to both deterministic and stochastic problems. 
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INTRODUCTION 

Standard methods of identification of basic thermal characteristics of building materials, for 
macroscopically homogeneous and isotropic material structures, namely of their effective 
thermal conductivity   [W/(K·m)] (crucial for the thermal insulation properties) and heat 

capacity c  [J/(K·kg)] (important in the analysis of thermal accumulation), as described in 

(Černý, 2010), p. 105 (for separate steady-state measurements of   and various calorimetric 
ones for c ), are not applicable under hard experimental conditions. In particular, this is true i) 
for fire-clay bricks at high temperature, ii) during early-age changes in maturing concrete 
mixtures, iii) for heat storage equipments in systems of effective exploitation of sun energy 
using optical fibres, iv) for advanced phase-change insulation materials – cf. (Šťastník, 2010). 
Similar arguments are valid also for the heat transfer coefficient   [W/(K·m

2)] between vari-
ous materials. A more promising way of direct non-stationary measurements of the tempera-
ture T  and the controlled heat fluxes q , combined with non-trivial computational techniques, 
compatible with (Bochev, 2009), p. 49 (with quasi-solutions in sense if (Isakov, 2006), p. 32), 
refers to various modifications of the least squares formulation of an original evolutionary 
variational problem. It can be traced from and (Duda, 2003) and (Achtolungo, 2008); availa-
ble alternatives to the least squares approach are discussed in (Colaço, 2006).  
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Real non-stationary measurement devices consist usually from several material layers, includ-
ing an analyzed specimen, whose material parameters are unknown in advance. Some heat 
fluxes are forced by electrical heating; due to the measurement configurations, the most fre-
quently used approaches are the hot-plate method by (Klarsfeld, 1992), the hot-wire method 
by (André, 2003) and the hot-ball method by (Kubičár, 2007). In addition to the controlled 
heat source, some temperature sensors must be included in the measurement system; if both 
the temperature and the heat fluxes can be evaluated at a substantial part of the boundary then 
the identification of  , c  and   is possible, thanks to the overdetermined boundary condi-
tions. Various modifications of the basic configurations are available, as certain additional 
insulation layers, the second (cold) plate, etc. – cf. (Šťastník, 2007). Most measurement de-
vices try to arrange a simple (nearly) closed physical system, although the real (at least) ther-
mo-, hygro- and chemo-mechanical material behaviour is typically a result of interaction of 
several physical and chemical processes, whose proper analysis requires a multi-scale ap-
proach to the balance laws of classical thermodynamics – cf. (Vala, 2011). Since T  may be 
not continuous on the boundary of a specimen, the (a priori unknown) interface heat transfer 
coefficient  , in general variable on the boundary (but not in time), can be taken into account, 
similarly to the Robin coefficient in (Jin, 2008).  

The form of mathematical description is derived from the experimental arrangement. Whereas 
the hot-plate experiments are simulated using the Cartesian coordinates (typically under addi-
tional symmetry assumptions), the hot-wire experiments apply the cylindrical and the hot-ball 
experiments the spherical ones. In some cases this access offers a possibility to exploit special 
properties of (semi)analytical solutions with trigonometric, Bessel, etc. functions, combined 
(for direct problems) with the general Fourier method. Following such classification, we shall 
pay attention namely to a model case of the hot-wire measurements system and related com-
putational tools.  

The approach of (EN ISO, 2010), exploiting the classical analysis of (Carslaw, 1946), consid-
ers   and c  as constants (at least for the temperature range of separated measurements). 
Moreover, it ignores the third, fourth, etc. additive terms in the power series expansion of ex-
ponential integrals, thus it should be natural to remove this formal simplification. Just this 
first step is able to get a realistic estimate of c , in addition to the improved value of   , using 
the standard Newton iteration procedure together with the least squares optimization tech-
nique for two real variables to handle uncertain data. 

The second step relies on the removal of further non-physical assumptions, as of the zero wire 
thickness and of the infinite specimen size. This leads to the analytical solutions based on the 
theory of Bessel functions and to much more complicated optimization algorithm, whose 
derivation needs formal MAPLE manipulations, but still with two real variables. From the 
macroscopic point of view, we consider an isotropic material, thus one scalar characteristic   
is be sufficient; to remove this assumption, it is not difficult to take heat fluxes 

1 1 2 2 3 2( )         T x T x T x , containing a triple of (a priori unknown) factors 1 2 3( )    , 
instead of heat fluxes T  just with   only. Another simplification, following 
(Wullschleger, 2008), consists in the (seemingly too strong) assumption that  , c  (and also 
 , needed in further considerations only – a perfect interface with continuous T is still as-
sumed here) are independent of T ; however, all local forced non-stationary temperature 
changes near the measurement device are negligible in comparison to the ambient temperature 
in view. The original software package, applicable also (for comparison, as the limit case) to 
simplified computations, as well as all measurement equipments, have been created in the 
Laboratory of Building Physics at Brno University of Technology (BUT). The received val-
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ues of    and c  usually seem to be rather realistic, but non-negligible differences between 
experimental data and simulation results, not explainable by statistical arguments, occur also 
here. 

The numerical simulation of the above mentioned heating experiments with some estimated 
values of  , c  (and  , if considered in the model) starts an iteration procedure, whose aim is 
to obtain the optimal values of  , c  (and  ) in a reasonable least squares (or similar) sense, 
working with the time-variable difference between the calculated and recorded temperature. 
An alternative approach, studying the difference between the predicted and controlled bound-
ary heat flux, is rarely used because of the computational difficulties with unstable boundary 
conditions. Instead of c , c   [J/(K.m 3 )], using the material density   [kg/m 3 ], is often 
considered; such formal transformation is acceptable because the experimental setting of   is 
usually much more simple than that of the remaining characteristics. Another material charac-
teristic, frequently used in the literature, is the thermal diffusivity   [m2/s], introduced as 
    . In the hypothetical case of pure heat conduction and quite exact measurements, 
computations of the optimal values of  ,   (and  ) correspond to a zero least squares sum, 
otherwise such sum can serve as a basis for uncertainty considerations, e. g. for the Sobol sen-
sitivity analysis by (Kala, 2011).  

The most general third step requires proper numerical analysis both in the 3-dimensional 
Euclidean space (e.g. using the finite/infinite element technique) and at the simulated time 
interval (using the Rothe sequences or the Galerkin approach) in the deterministic case, but 
(to handle the data uncertainty) also the stochastic modifications of such methods like 
(Zabaras, 2004), whose existence and convergence theory have not been closed yet. The op-
timization procedure, coming from the least squares approach, working with material parame-
ters from Lebesgue and Sobolev spaces, can be decomposed to particular steps related to di-
rect, sensitivity and adjoint problems, using the conjugate gradient method with special regu-
larization terms. However, the need of such robust and efficient solver of practical inverse 
problems remains as a motivation for future research. 

 

Fig. 1  Practical implementation of the hot-wire method, following (EN ISO, 2010). 
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 IDENTIFICATION PROCEDURE BASED ON EXPONENTIAL INTEGRALS 
The European standard (EN ISO, 2010) contains an explicit (seemingly strange) logarithmic 
formula for the evaluation of  , supplied (for uncertain measurements) by the least-squares 
(linear regression) approach to data fitting. However, as shown in (Bilek, 2006), it can be 
identified with the fundamental solution of the heat conduction equation, satisfying the realis-
tic boundary conditions in certain limit sense, well-known from (Carslaw, 1946), where in the 
additive decomposition of an exponential all terms except the first two are removed; this can 
be justified by the location of temperature sensors close to the heating wire. Such approach 
enables us to calculate (approximately)   without the a priori knowledge of  ; unfortunate-
ly, no information referring to   is then available (because it was hidden in the removed 
terms of higher orders containing  ). We shall demonstrate that the proper analysis of the 
above sketched problems offers a possibility to identify both   and   from the same data set. 
Moreover, we shall show later how some unpleasant physical and geometrical assumptions 
can be modified to be more realistic, using the properties of Bessel functions by (Culham, 
2004), instead of the old analytical results from (Carslaw, 1946). 

Following (EN ISO, 2010), let us assume that some constant heat Q  [W/m], starting from the 
zero initial time, is generated per unit length of a very long and thin wire, located in the axis 
of the circular cylinder with a very large radius, occupied by the material specimen. Let 

( )T r t  be the temperature field defined for any positive radius r  (a distance from the axis of 
rotation) and each positive time t  (for some measurement period in practice) and 0T  the con-
stant temperature of the surrounding environment. Then, by (Bilek, 2006), referring to (Cars-
law, 1946), or (Borukhov, 2006), applying the notation 0 (4 )Q   , 1 (4 )   , we have  

 2

0 0

exp( )
Ei( ) with Ei( ) d 






     

u
T r t T u

u
 (1) 

Indeed, using dot symbols for partial derivatives with respect to t  and prime symbols for 
those with respect to r , it is easy to verify that T  from (1) satisfies the classical Fourier equa-
tion of heat conduction (without internal heat sources) with constant characteristics   and   
in polar coordinates  

 ( ) 0T rT
r


     (2) 

together with the obvious initial condition 0( 0)T T   and the with couple of boundary condi-
tions  

 
0

( )
lim ( ) 0 lim 1

(2 )r r

T r
T r

Q r



  

 
   


 (3) 

where the first limit guarantees the absence of heat fluxes from external environment and both 
the numerator and the denominator in the second limit represent the heat flux [W/m2] on the 
surface of cylinder with a fixed small radius (this is just the announced way how to avoid the 
realistic finite radius and all material characteristics of a wire). Clearly the data for 0t   (and 
also 0t   in practice), thanks to the discontinuity of heat generated into the system (forcing 
the application of Dirac measures and Heaviside functions in (Carslaw, 1946)), are then not 
employable in any credible identification procedure for   and  , in particular for   and   
from (1); for the special case of the simplified evaluation of   this observation is reflected by 
(EN ISO, 2010), too.  
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Let us assume that all sensors recording the temperature are located at r   where a distance 
  must be a very small positive number by (EN ISO, 2010) (the measurement could be per-
formed as close as possible to the wire surface), but is allowed to be finite in our considera-
tions. Let m  be a number of measurement time steps; the initial time 0t   is not included. 
Let 

1 mt … t   (
10 mt … t   ) be discrete measurement times and 

1 mT … T   corresponding tem-
perature values at r  . All differences 

1s sT T   with {2 }  s …m  should correspond to the 
experimental temperature differences 

s . For simplicity, only one recorded temperature value 
is considered in every discrete time here; the generalization over all available data is obvious. 
Thus, using the notation 2

1  , we have to minimize a function 

 2

1

2

(1 2) ( ( )) 



    
m

s s s

s

T T  (4) 

of two positive variables 0  and 1  (transformed from   and   easily).  

Let i  and ij  denote the derivatives i  and 2

i j     with {0 1}  i j . For 

1 1Ei( )s st   , *

1 1 1 1exp( ) exp( )        s s st t  and 0 1s s s      with {2 }  s …m  we 
receive the explicit formulae (the MAPLE support is welcome)  

2 *

0 1 1 0 1 1

2 2 2

(1 2) ( )       

  

             
m m m

s s s s s

s s s

 

2 *

00 1 01 1 0 1 1

2 2

(1 ) (2 )      

 

         
m m

s s s s

s s

 

 2 * 2 2 *

11 0 1 1 0 1 1 1 1 1 0 1 1

2 2 2

( ) ( ) Ei( ) Ei( ) ( )             

  

             
m m m

s s s s s s s s

s s s

t t t t  

Clearly we need 0 1 0    . Taking (for sufficiently small  ) 1 0   together with 
Ei( ) ln( )eC      (the Euler-Mascheroni constant 0.5772156649eC  is not needed in nu-
merical calculations), for 1ln( )s s st t    with {2 }  s …m  we obtain the very simple formula  

 2

0

2 2

m m

s s s

s s

   
 

     (5) 

which is identical with that for the identification of   from (EN ISO, 2010). More generally, 
we are allowed to choose 0  from (5) as the first estimate together with  

 2

1 1 0 1

2 2

(1 1 )( ) (1 1 )
m m

s s s s s s

s s

t t t t    

 

            

and apply the Newton iteration procedure  

 
1

00 0010 0

01 11 11 1

,
 

 


      
        
      
      

            

  
 

  
 

i. e., following the Cramer rule, simply 0 0 0 /  B B  and 1 1 1 /  B B  where 
2

00 11 ,01 0 0 11 1 01 1 1 00 0 01: , : , : .                      B B B  
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 Fig. 2  Development of temperature in time – complete data set (upper graph)  

and reduced data set (lower graph). 



 Integrity, Reliability and Failure of Mechanical Systems 

IRF’2013  7 

 

 

Fig. 3  Development of difference of neighbour temperatures in time – complete data set (upper graph)  
and reduced data set (lower graph). 
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This enables us to determine (at least theoretically, with a higher accuracy) both 
0  and 

1 , 
consequently also  ,   and  .  

As an illustrative (and cautionary) example, let us present the hot-wire measurement equip-
ment by Fig. 1, described in (Šťastník, 2012). Just one temperature value was recorded in 
each time step; the sensitivity of its measurement was only 0 1  K. Fig. 2 and Fig. 3 present 
the results of the above sketched identification procedure, including the final values of   and 
 ; the logarithmic-scaled time is presented alternatively because of the logarithms hidden in 
(5). Fig. 2 shows the temperature development in time and documents the computational algo-
rithm for all available temperature measurements: the green dots represent the recorded tem-
perature values, the dashed red line the estimate by (EN ISO, 2010), coming from the approx-
imation (5), the full blue line the final result of the proper minimization of (4). Since (EN 
ISO, 2010) recommends certain data reduction, both identification procedures have been done 
for complete and reduced data separately – with quite other results. Fig. 3, corresponding to 
Fig. 2, displaying differences of neighbour temperatures in time for both mentioned cases, 
discovers the most probable source of this fault: the low sensitivity of recorded temperature 
values. Clearly some improvement of this method is needed. One could rely on better results 
for a higher distance of temperature sensor(s) from the hot wire, but this i) requires substantial 
reconstruction of the measurement device, ii) looses the compatibility with (EN ISO, 2010).     

 

IDENTIFICATION PROCEDURE BASED ON BESSEL FUNCTIONS 

The generalization of the above sketched approach, removing mathematical and physical sim-
plifications, can be done in more directions. However, being motivated from the results of 
MATLAB-supported practical calculations with experimental data, we shall try to replace the 
rather artificial boundary conditions (3), following (Singh, 2010), by more realistic ones.  

Let a  be the outer radius of a specimen and a   a wire radius. Let us introduce the brief 
notation for scalar products in the special Lebesgue weighted spaces (cf. (Fučík, 1980))  

 2

0
( ) ( ) ( )d for all (0 )          

a

r rr r r r L a  

 2

0
0

( ) ( ) ( )d for all (0 )


           r rr r r r L  

 2

1( ) ( ) ( )d for all ( )


           
a

r rr r r r L a  

Material characteristics      will be taken as simple functions of r , with values equal to a 
priori known constants 0 0 0     for 0 r    and unknown ones 1 1 1     for r a    (alt-
hough their rather good estimates may be available by the previous section); moreover we 
shall need 1 0     , 1 0      and 1 0     .  

Let V  be the space of admissible test functions, i. e., applying the notation of special Sobolev 
weighted spaces (cf. (Fučík, 1980)) again, the space of all 1 2 (0 )rv W a   such that  

i) 0( ) ( )v r v r  for 0 r    and some 1 2

0 (0 )rv W   , 

ii) 1( ) ( )v r v r  for r a    and some 1 2

1 ( )rv W a   satisfying 1( ) 0v a  .  

Let H  be the space introduced in the same way as V  except 2

rL  inserted instead of 1 2

rW   eve-
rywhere. Using such notation, we are able to convert (2) into the form   
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 ( ) ( ( ) ) ( )r r rv T v rT r v g          (6) 

where 2( )g Q    for 0 r    (any better information on the distribution of g  in a wire is 
usually missing), zero otherwise. For positive times t  we have to find 

0( )T t T   from V  
with ( )T t  from H .  

Let us consider the decomposition ( ) ( ) ( )T r t T r r t      where 

 
1

( ) ( ) ( ) with ( ) ( ) ( )    




       i i

i

T r t T r r t r t r t  (7) 

the corresponding initial conditions are 
0( 0)T T   and 

0( 0) ( )T T      and the boundary 
(including the internal interface) ones are  

 
0 1

0 1

0 1 0

(0 ) 0 ( ) ( ) ( ) 0

(0 ) 0 ( 0) ( 0) ( ) 0

( ) ( ) ( )  

   

      

   

 

 

 

           

           

   

T T T T a

a

T T T a T

 (8) 

(   and   signs as indices after   refer to left and right limits). Here T  can be derived as an 
analytical solution for the stationary case (with zero   formally)   

                       
2

1 0

1

(2 ) ln( ) (4 )(1 ( ) ) for 0
( )

(2 ) ln( ) for


    

 

         
 

    

Q a Q r r
T r

Q a r r a
                    

Utilizing the properties of Bessel functions  

 
0

1
( ) cos( sin )d with {0 1 2 }



  


      nJ r r n n …  

namely 0 1( ) ( )J r J r  , 1 0 1( ) ( ) ( )J r J r J r r   , etc., by (Culham, 2004), Chap. 7-8 (with the 
title Bessel functions of the first and second kind ), we can see that  

 1 2

0 0( ( )) ( ) 0r rJ r J r       (9) 

for any real  , it is natural to find the zero points of Bessel functions, i. e. to solve equations 

0( ) 0iJ a    for unknown parameters i  with {1 2 }  i … , and to choose   

 0

0

( ) for0
( )

( ) for

   


  

  
 

   

i i i

i

i

J r r
r

J r r a
 (10) 

to satisfy boundary conditions (0) 0i  , ( ) 0i a   automatically and  

 ( ) ( ) ( ) ( ) ( ) ( )i i i i                    (11) 

for special i  and i  only, solving the auxiliary systems of two nonlinear equations  

 
0 0 1 1( ) ( / ) ( ) ( / ) ( / )                  i i i i i i i i iJ J J J  (12) 

Since 
0 0( / ) / ( )    i i i iJ J  evidently, for 1 0( ) ( ) ( )i i i i i i iF J J         where 

1 0( / ) ( / ) ( / )          i i iJ J , instead of (12) it is sufficient to solve (separately) 
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all equations ( ) 0iF   , applying classical Newton iterations ( ) ( )i i i iF F       where 

0 1( ) ( ( ) ( ))         i i i i i i i iF J J  (   means the derivative with respect to 
i ).  

Inserting (10) and (7) into (6), for any v V  we receive  

 
0 1 0 0 1[( ) ( ) ] [( ( ) / ) ( ( ) / ) ] 0        

         i r i r i r i r ii
v v v r r v r r  (13) 

Taking (9) into account, (13) gets the form  

 2 2

0 1 0 0 1[( ) ( ) ] [ ( ) ( ) ] 0                  i r i r i i i r i r ii
v v v v  (14) 

Simultaneously, applying the Green-Ostrogradskiǐ theorem, (13) yields  

0 1 0 0 1 0[( ) ( ) ] [( ) ( ) ] [( ( ) ( ) ( ) ( )] .                     
         i r i r i r i r i i ii

v v r v v v v (15) 

In particular, for jv   with any {1 2 }  j … , comparing (14) and (15), we have   

 2 2

0 1 0 1( ) ( ) [ ( ) ( ) ]                   j i r j i r i i j i r j i r  

The mutual exchange of indices i  and j  then results certain quasi-orthogonality condition   

 2 2 2 2 2 2

0 1( ) ( ) ( )( ) 0                i j i j r i i j j i j r  

in practice 2 2

i j     can be considered.  

To find all i  contained in (7), we must solve an eigenproblem  

 0ji ji ii
M K     

for 0 1( ) ( )ji j i j iM r r        , 2

0 0 1( ) ( ) )ji i j i j iK r r             and for a decomposi-
tion  

exp( ) ,  i ip p pV t C  

using the Einstein summation rule for all indices {1 2 }    i j p … ; p  here are eigenvalues, 

1 2i iV V …   eigenvectors (in the matrix form we could write MV KV   only) and pC  un-
known parameters, needed to be set due to our initial condition. The resulting formulae (as-
suming i j ) for effective numerical computations (obtained with the support of MAPLE) 
are  

0 1

0 1

2 2 2 2 2 2

2
2

0 2 2 2 2 2 2

( / ) ( / )
(1/ )det

( / ) ( / )

1 1

1

      


     


     


  

     

 



 





 
  

  

 
      

 
      

j j j

ji

i i j

ji ji

j j i i j i

i
ji i ji

j j i i j i

J J
D

J J

M D

K D
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2 2 2 2 2 2 2

1 0 0

2 2 2

0 1

2 2 2 2 2

0 0

2 ( / ) (1 ) ( / ) ( / 1) ( )

2 [ ( / )

( ) ( / ) ( 1) ( / )]

            

    

         

     



    

      



    

ii i i i i

ii i i

i i i

M a J a J J

K a J a

J J

 

The evaluation of all constants pC  then comes from the equation  

0 0 0 1 0 1( ) ( ) [( ) ( ) ]              r r i r i r ip pv T T v T T v v V C  

i. e. 0 1F F MVC  , consequently 1

0 1( ) ( )C MV F F  , where  

 2

0 0 1 0 2 0 31
/( )[( ) ( ) 2 ( ) ( ) ( ]                       j j j j j j i i j j j jF J J J  

with 0 0(2 )Q   , 1 0(2 )Q   , 
11
ln( )a    , and  

 
1 1 0 1(ln( ) ( ))       j j rF a r J r  

just the integral(s) 1 jF  cannot be evaluated analytically in a simple way .  

Our final aim is, exploiting the same data as in the preceding section, to minimize a function 
  from (4), admitting also 1s  now, of two positive variables   and   (transformed from 

1  and 1 ). Clearly a (sufficiently large) finite number of Bessel functions is considered in 
(7) in numerical calculations, thus all matrices M  and K , vectors F , etc. are finite. Howev-
er, it is not so easy to perform the minimization procedure because no simple explicit formu-
lae employable in the Newton iterations are available, thus numerical evaluations of approxi-
mate first and second derivatives of   are necessary. Fortunately, this can be done e. g. with 
the support of selected functions from the MATLAB toolbox optim, although the quadratic 
convergence like that in the previous section cannot be expected here. 

Fig. 4 makes use the same complete experimental data, even including the initial value for 
0t  , ignored in the previous section, as Fig. 2 (not their reduced set as Fig. 3), but the realis-

tic wire and specimen sizes in the r -direction have been considered and the finite thermal 
characteristics of the wire have been taken into account. The green dots in the upper graph 
refer to the experimental temperature values again; the blue curve corresponds to certain ex-
pert initial estimate of   and  , whereas the remaining curves document the robustness of 
the suggested algorithm. The lower graph documents the convergence of numerical iterations 
( - and  -factors there mean the multiplicative factors to the first estimate) during the min-
imization of   from (4); the dotted lines document a non-negligible number of death ends, 
caused by the inaccessibility of exact derivatives of  , unlike those from the previous sec-
tion. As shown on Fig. 5, for the temperature on the upper graph and for the heat flux in the 
r -direction on the lower graph, finally for the approximate solutions of (6), only 10 first Bes-
sel functions are able to generate practically acceptable results. The visible numerical oscilla-
tion, namely in the case of the heat flux, derived from the derivatives of  T  with respect to r , 
correspond to the jump in the heat source in the initial time. However,  the flagrant difference 
between the measured values and the best simulated time-dependence of temperature on the 
upper part of Fig. 4, refers to probable influence of other physical processes, not included in 
the model.      
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Fig. 4  Development of temperature in time – rough estimate and iterations (upper graph)  
and corresponding error indicator (lower graph). 
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Fig. 5  Distribution of  time-variable temperature (upper graph) and heat flux (lower graph), 
corresponding to Fig. 4.  
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MORE GENERAL MODELS AND COMPUTATIONAL TECHNIQUES 

In general, without simplifying assumptions from two preceding sections, a material specimen 
can be considered to occupy a domain   in the 3-dimensional Euclidean space 3R , supplied 
by the Cartesian coordinates 

1 2 3( )x x x x   , whose boundary  , as illustrated on Fig. 6, con-
sists of two disjoint parts: 

c  and 
i . The standard notation of Lebesgue, Sobolev, Bochner 

and other spaces of (abstract) functions, compatible with (Fučík, 1980), (Maz’ya, 1984) and 

(Roubíček, 2005), will be applied in the following text. We shall assume that the choice of   
guarantees the validity of standard results from the theory of Sobolev spaces, presented in 
(Roubíček, 2005), p. 16, as the Sobolev imbedding theorem, the trace theorem, etc.; for much 
more details (involving perverse domains) see (Maz’ya, 1984), p. 63, 222, etc.  

Let us take the time t  from a time interval [0 ] I  with certain positive final time  ; the 
dot symbol is reserved for partial derivatives with respect to t . Moreover, let us suppose that 
all variables are not only functions of t  and x , defined on I  , I  , etc., but also func-
tions of parameters   from the sample space A  of elementary events. Such sample space 
must be supplied by the minimal  -algebra on A  and by certain probability measure P . For 
the function spaces S  introduced on some subsets of 3R , as 2 ( )L   (applying the 3-
dimensional Lebesgue measure) or 2 ( )L   (applying the 2-dimensional Hausdorff measure), 
supplied with their standard norms .

S
, we are allowed to consider, following (Zabaras, 

2004), the abstract function spaces 2( )L A I S  , for their arbitrary elements   equipped with 
the norms  

 2

2

( )
( ) d d  

 
    L A I S SA I

t t P  

 
Fig. 6  Geometrical configuration – an illustrative scheme. 

Clearly in the deterministic case A I  degenerates just to I  (the integral over A  vanishes).  

Following two preceding sections, we can also take * T T  for an arbitrary temperature 
level *T ; this can be repeated for all temperature data (without additional comments in the 
text). Moreover, we shall use the brief notation of scalar products ( )   in 2( )dL A I  , 

j< >   in 2 ( )jL A I  , ( )t  in 2( )dL A , jt< >  in 2 ( )jL A  where d  is equal to 1 or 
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3 (in the sense of Cartesian products), j  means i  or c  and t  forces the evaluation at some 
special time, namely at 0t   or t . The values of the following physical quantities from 

2( )L A I S   are assumed to be available:  

 the body heat flux f     for 6 5( ) S L , 

 the surface heat flux q    for 2 ( ) cS L , 

 the prescribed temperature  c   for 2 ( ) cS L , 

 the ambient temperature  a
   for 2 ( ) iS L . 

At first, let us suppose that S , S   and S   where S  and S  are admissible sets 

from ( )L A   and S  is an admissible set from 2 ( )iL A . One can expect that in practical 

applications 2 ( )iS L A    may be considered (boundary heat fluxes depend on some local 
contact imperfectness, whose detailed analysis is not available), whereas   and   belong to 
some low-dimensional (typically finite) spaces, in the best case of dimension 1 (to obtain con-
stant thermal conductivity and heat capacity and to avoid lack of input data). For simplicity let 
us also define ( ) S S S           .  

For arbitrary   and   from 2 1 2( ( ))L A I W     (consequently 2 4( ( ))L A I L       and 
2( )L A I     – see (Roubíček, 2005), p. 17) with   and   from 2( )L A I  , choosing 

some weight 2 ( )cw L A I   , let us introduce two functionals  

 
2

( ) ( ) ( ) ( )

1
( ) ( )

2

i c a i

c c

< > f < q > < >

G < w >

               

  

               

   
 

To avoid long non-transparent expressions, let us start with the particular case (0 0 )    , 
introducing ( ) ( )F            . The derivatives of both functionals F  and G  for   and 
  from 2 1 2( ( ))L A I W     and S   are  

 
( 0) ( ) ( ) ( )

( ) ( )

               

    

               

    

i a i

c c

DF < > < >

DG < w >
 

Now we are ready to formulate the direct, sensitivity and adjoint problems:  

The direct problem: Let   be fixed and 0 0  . Find such   that  

 ( ) 0F       

for any  , i. e.  

 ( ) ( ) ( ) ( )                     a i c< > f < q >  (16) 

The sensitivity problem: Let   and   be fixed and 0 0  . Find such   that  

 ( 0) 0DF            

for any   where   comes from the direct problem, i. e.  
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 ( ) ( ) ( )                   i a i< > < >  (17) 

The adjoint problem: Let   be fixed and 0  . Find such   that  

 ( 0 0) ( ) 0DF DG              

for any   where   comes from the direct problem, i. e.  

 ( ) ( ) ( )                   i c c< > < w >  (18) 

The direct problem does not apparently cover the non-zero values of 
0f , 

0q  and 
0a  correctly. 

Nevertheless, under the assumption of initial equilibrium (accepted in all experiments)  

 
0 0 0 0 0 0 0 0 0 0( ) ( ) ( ) ( )                    a i c< > f < q >  

we can take 
0f f , 

0q q , 
0a a   and 

0   instead of f , q , 
a  and  , which forces the 

zero initial condition.  

With some fixed  , the overdetermination of (16) is evident. Its solution can be found only in 
the sense of least squares minimization, i. e. as the minimum of the functional  

 21
( ) ( ) ( )

2
c cJ G < w >        (19) 

where   (dependent on  ) comes from (16). Moreover, taking   from (18) and   and   
from (17), we can derive another useful identity  

 ( ) ( )a i c c< > < w >             (20) 

Applying the Green-Ostrogradskiǐ theorem (on integration by parts), we are also able to con-
vert (16), (17) and (18) (at least in the sense of distributions) into their (more reader-friendly) 
classical differential forms. Let 1 2 3( )       be the local outward unit normal vector on  . 
From (16) we obtain  

 
( ) 0 on

on

( ) 0 on

  

  

     

      

     

       

c

a i

f A I

q A I

A I

 (21) 

from (17) similarly  

                                        
( ) 0 on

0 on

( ) on

  

  

      

     

     

       

c

a i

A I

A I

A I

                               (22) 

finally from (18)  

                                        
( ) 0 on

( ) on

0 on

  

     

  

     

      

     

c c

i

A I

A I

A I

                             (23) 

Similar calculations can be repeated both for ( 0 0)     and (0 0)    , as well as for 
( 0)     : e. g. the right-hand side of (17) obtains the form  
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 ( ) ( )           

consequently such terms occur also in (20). The full (rather long) derivation of corresponding 
relations for the general case ( )       is left to the careful reader.  

Following the decomposition of ( )       to (0 )     , ( 0 )      and (0 0 )    , 
starting from some estimate 0 0 0 0( )      , the first step of the computational algorithm 
should contain (in general) 3 corrections:  

 of 0 S   to 1 S   with fixed 0 0( ) S S     ,  

 of 0 S   to 1 S   with fixed 1 0( ) S S     ,  

 of 0 S   to 1 S   with fixed 1 1( ) S S     .  

The second step repeats the same calculations with 1  (and its components, eventually) in-
stead of 0  and 2  instead of 1 , etc. The convergence depends on the kind of corrections.  

The available choice for a), b), c) can be the conjugate gradient method for Hilbert spaces, 
whose basic idea comes from (Axelsson, 1987). Since a), b), especially in the case of low 
finite dimensions of S  and S , can be often handled using the classical Newton algorithm, 
we shall show such choice in more details for c). Using the upper indices {1 2 }  k …  for iter-
ative steps, introducing the simplified notation  

 ( ( ) )     k k k k

ag  (24) 

motivated by (20), we are able to express the first and second derivatives  

 2 2( ) ( ) ( ( ))               
k k k kk k k k kk

i cDJ < g > D J < w >  

Consequently the improvement of k  can be  

 1 kk k ka      (25) 

with the line search parameter  

 
2

( )

( )

kk
k

k kk

DJ
a

D J

 

  


 

 
 

(generalizing the Newton iteration technique, well-known for a function of one real variable) 
and that of 1k


   

 1 11 for all {2 3 }  


        
k kk kg b g k …  (26) 

applying the Fletcher-Reeves ratio  

 
1 1

k k
k i

k k

i

< g g >
b

< g g > 





 

or (alternatively) an equivalent evaluation of kb  (e. g. by Hestenes-Stiefel, Polak-Ribiere or 
Dai-Yuan – cf. (Sun, 2001)).  
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However, the exact analytical solutions k , k
 , k ,  k , k , etc., from (16), (17), (18), (25) 

and (26) are (in general) not available; the discretization i) in 3R , ii) in I  and iii) in A  is 
needed. The reasonable choice for i) is the finite element technique with Hermitean polyno-
mials as basis functions in an approximation space of some finite integer dimension n  (the 
limit passage n   is expected again), supporting the direct evaluation of  ,   and 
 ; for more details and references see (Vala, 2011, 1st item). For ii) this technique can be 

coupled with the method of discretization in time, based on the construction of the Rothe se-
quences, using the Crank-Nicholson scheme: for any positive time step h , m T h   and in-
tervals ( 1)m

sI {t I s h t sh}       with indices 1 2s { …m}    we take 1( ) 2m m

s s     instead 
of   and 1( )m m

s s h     instead of  , etc., on m

sI , with the aim of the limit passage m  .  

Some non-classical methods are required for iii), namely the uncertainty representation tech-
nique, based on the Karhunen-Loève or polynomial chaos expansions by (Narayanan, 2004) 
or on the Bayesian approach by (Ma, 2009), compatible with (Ferreira, 2007), p. 25. Howev-
er, corresponding numerical algorithms may require artificial (non-physical) regularizations, 
as the implementation of the Tikhonov functional by (Hanke, 1995), Chap. 4, and (Lu, 2010).  

Taking into account the scope of the conference, only the basic ideas of all proofs will be 
sketched here. For the deterministic case the complete existence and convergence analysis 
should contain the verification:  

a) of the existence and uniqueness of a minimizer of (19) (including its generalization con-
taining   and  ),  

b) of the existence and uniqueness of solutions of the time-discretized forms of (16), (17) and 
(18) and of the convergence of the corresponding Rothe sequences for m   to original 
solutions of (16), (17) and (18),  

c) of the existence and uniqueness of solutions of the fully discretized forms of (16), (17) and 
(18), generating for n   the Rothe sequences from b),  

d) on the convergence of the conjugate gradient and other algorithms from the preceding sec-
tion to a minimizer of (19) from a), including the restarting strategy.  

More comments to the items a), b), c), d) follow.  

If a weight w  is positive (almost) everywhere on c  then the result a) can be derived from 
the theory of continuous convex functionals by (Fučík, 1980), p. 191. This can be done even 
independently of the convergence of Rothe sequences by b).  

The existence and uniqueness of m

s  in b) for particular time steps with {1 }  s …m  follow 
from the Lax-Milgram theorem, supported by the standard arguments from the theory of 
Sobolev spaces (the trace theorem, the Sobolev imbedding theorem, the Cauchy-Schwarz ine-
quality, etc.). Consequently some a priori estimates in appropriate Bochner, Lebesgue and 
Sobolev spaces, coming from both (continuous and discrete) versions of the Gronwall lemma, 
guarantee, thanks to the Eberlein-Shmul’yan theorem, the required strong and weak conver-
gences of the Rothe sequences for m   to   and   from (16), to   and   in (17) and to 
  and   in (18); all preliminaries can be found in (Roubíček, 2005), p. 252.  

The full discretization in c) for fixed n  and m  results in a system of (usually sparse) linear 
algebraic equations. For a large class of families of decomposition of   such systems are 
regular (even positive definite); consequently the required convergence for n   follows 
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from classical results of the finite element approximation theory, e. g. for the Hermitean ele-
ments by (Brenner, 2002), p. 75. 

The crucial aim of d) is to prove that kg  from (24) tends to zero for k  . This needs the 
detailed analysis of the iteration steps of the conjugate gradient methods, namely of the evalu-
ation of factors ka  and kb . Fortunately, thanks to a), the approach of (Sun, 2001) leads to the 
needed global convergence result (involving slight modifications caused by the improved val-
ues of   and  ).  

The technique of proofs in the general stochastic case (where the integrals over A  cannot be 
omitted) is similar to the deterministic one, related to the properties of separable Hilbert spac-
es and their finite-dimensional approximations. Nevertheless, the standard lemmas and theo-
rems from the (deterministic) variational calculus are valid under more complicated assump-
tions or are not available at all; this generates some additional problems which has not been 
closed yet. The stationary (steady-state) problem (where all integrals over I  vanish) with 

(0 0 )     and 2 ( )iS L A    has been analyzed in (Jin, 2008) properly, applying spectral 
stochastic finite elements and a special Tikhonov regularization, following (Hanke, 1995) and 
(Lu, 2010). Both approaches to the non-stationary problem (the spectral stochastic and the 
Bayesian one) with ( 0)      with rather general S  and S , sketched in (Zabaras, 2004), 
presented in (Narayanan, 2004) and (Ma, 2009), compatible with (Ferreira, 2007), separately 
in more details, contain just basic ideas (inciting further non-trivial questions), not the com-
plete set of existence and convergence proofs.  

Another needed generalization (in the deterministic case primarily) consists in the more pre-
cise physical and mathematical description of the heat transfer (and related) phenomena. To 
handle corresponding problems properly, most arguments of this section should be general-
ized substantially because the Lax-Milgram theorem and similar results from the standard 
variational calculus are not valid outside the linearized formulations like (16), (17), (18) in the 
integral form, or (20), (21), (22) in the differential one, even for a function ( )   instead of   
independent of  . Namely (20) could obtain the form   

 1

1

( ) 0 on

( ) ( )( ( ) ( ) ) on

( ) ( )( ( ) ( ) ) ( )( ( ) ) 0 on ;

  

    





     

         

          

N N

e a c

N N

e a a i

u b u f A I

b u u a u a u q A I

b u u a u a u u b u A I

 (24) 

here 1( )  c u  , ( ) ( ) b u  and   means a function whose derivative is  .  Moreover, 
new material characteristics ( )a u  and ( ) e u , coming from the analysis of thermal radiation, 
together with a constant exponent N  from the Stefan-Boltzmann law, occur in the nonlinear 
system of partial differential equations of evolution (24). The proper mathematical study of 
the system (24) is not easy, being conditioned by assumed growth properties of all above 
sketched functions: in some special cases we can study its weak solvability, using test 
functions from V , introduced now as the space of all functions from 1 2( )W    whose traces 
belong to ( )NL , in more general cases we must take up with its very weak solvability, 
following (Roubíček, 2005), p. 241,  applying test functions from 1 1 6 5( ( ) ( ))     W I W L . 
The more detailed analysis of this type, including some stochastic considerations, has been 
prepared for (Vala, 2013).         
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CONCLUSIONS AND APPLICATIONS 

The problem of heat transfer in building materials, seemingly a simple linear problem of evo-
lution of temperature, as a special case of the conservation of energy from classical thermo-
dynamics, brings substantial difficulties in its inverse (in general probabilistic) formulation, 
even for very special geometrical configurations, as the hot wire one, discussed in this paper. 
Moreover, under hard experimental conditions, namely at high temperatures, the temperature-
dependence of material characteristics and the influence of other physical processes cannot be 
neglected. This generates still open problems both in experimental research and in computa-
tional simulations, including their physical and mathematical background, motivated the re-
search activities for the near future.        

One practical application is to the production on dense-shaped refractory products, in the co-
operation of BUT with PD-Refractories in Velké Opatovice (former Moravian Fire and 

Schistous Clay Plants, Czech Republic). The hot-wire experiments can be organized in the 
similar way as on Fig. 1, although the illustrative experimental and simulation results, pre-
sented and discussed in this paper, have been derived for the standard environment tempera-
ture where such materials as constantan (a copper-nickel alloy), substituted the final use of 
(much more expensive) platinum-like ones. 

Another important application is connected with the material design for the high-temperature 
thermal storage, as one part of the large Swedish-Czech research project of the efficient 
exploitation of solar energy using optical fibers. This project for the time period 2012–14 is 
supported by the Technology Agency of the Czech Republic (Reg. No. 02021231). Fig. 7 
shows a small model of the thermal storage, whose complex design is a substantial part of this 
project; all technical details (because of patent protection) are not available to publication yet.        

 

Fig. 7  Model of the thermal storage – one part of the proposed system of effective exploitation of sun energy 
using optical fibres. 
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