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ABSTRACT 

The paper proposes a simple method for quick post-earthquake assessment of damage and 
condition of a stock of bridges in a transportation network using seismic data recorded by a 
strong motion array. The first part of the paper is concerned with using existing free field 
strong motion recorders to predict peak ground acceleration (PGA) at an arbitrary bridge site. 
Two methods are developed using artificial neural networks (a single network and a 
committee of neural networks) considering influential parameters, such as seismic magnitude, 
hypocentral depth and epicentral distance. The efficiency of the proposed method is explored 
using actual strong motion records from the devastating 2010 Darfield and 2011 Christchurch 
earthquakes in New Zealand. In the second part, two simple ideas are outlined how to infer 
the likely damage to a bridge using either the predicted PGA and seismic design spectrum, or 
a broader set of seismic metrics, structural parameters and damage indices.  

Keywords: bridges, structural health monitoring, condition assessment, damage assessment, 
peak ground acceleration, artificial neural networks. 

 

INTRODUCTION 

Rapid and reliable assessment of bridge condition and damage is an important but challenging 
task required to ensure efficient operation of transportation networks in the aftermath of an 
earthquake. Existing previous experience indicates that the responsible organizations usually 
show bewilderment in performing such tasks. Having a simple and reliable approach to using 
data recorded during the earthquake with the aim of assessing quickly bridge condition and 
damage will be useful in such situations. These data can be obtained from either structural 
health monitoring systems (SHM) installed on individual bridges or wide-area seismic 
monitoring arrays. It is only realistic to assume that the number of bridges equipped with 
individual SHM systems will always be small and for the remaining structures it is beneficial 
to harness data from the wide-area seismic monitoring arrays often installed in earthquake 
prone cities. The task of these strong motion recorders is to capture the time history of the 
ground acceleration during an earthquake. The peak value of this time history is called peak 
ground acceleration (PGA) and is a key parameter in structural design as well as damage 
assessment. 

It is necessary to know the ground motion’s parameters, such as PGA, at a bridge site during 
an earthquake to be able to perform an assessment of the bridge condition immediately after 
that earthquake. Despite large numbers of strong motion recorders in earthquake prone cities 
there are still large numbers of bridges which are located in places which are remote from any 
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of those strong motion stations. For the assessment of these structures it is therefore necessary 
to predict the ground motion parameters at their locations using data available from remote 
strong motion recorders. In the present paper, two artificial neural network (ANN) based 
approaches are first proposed which make it possible to predict the maximum horizontal PGA 
at any arbitrary point, e.g. a bridge site, using PGAs recorded by arrays of strong motion 
recorders distributed over a large area. The first approach uses a single ANN, whereas the 
second approach an ANN committee (ANNC). The array in the city of Christchurch, New 
Zealand and the data recorded during the devastating 2010 Darfield and 2011 Christchurch 
earthquakes and their aftershocks are used as a case study. The proposed approaches showed 
reliable capability to do intended task. 

In the second part of this paper simple ideas are introduced which are intended to predict the 
likelihood of damage to bridge structures using the predicted ground motion metrics at the 
bridge site. The first idea is to use the predicted PGA and compare to that assumed in design 
using a design spectrum. 

 

ANN-BASED APPROACH TO PGA PREDICTION 

Artificial neural networks are one of the most powerful mathematical approaches to find the 
governing relation between a set of inputs and outputs. There are many studies in the 
literature that have used artificial neural network for problems such as seismic damage 
prediction for multistory buildings (de Lautour and Omenzetter, 2009), estimating bridge 
damage after major earthquakes (Lin et al., 2002), sensitivity analysis of damage ratio 
(Hadzima-Nyarko et al., 2011), earthquake forecasting (Alves, 2006) and PGA estimation 
(Kerth et al., 2011). 

In this study, the earthquake records from GeoNet data center (www.geonet.org.nz) have been 
used for training, validating and testing the neural networks. The data are related to the 2010 
Darfield and 2011 Christchurch earthquakes and their aftershocks. Five recording stations 
located around the center of Christchurch were considered to develop the networks and 
another recording station (CBGS) was considered to test the predictive power of the proposed 
approaches. Figure 1 and Table 1 show the locations and additional information of these six 
stations. 

While the output of the ANN, i.e. PGA, is determined, it is important to include as many as 
possible influencing factors as inputs. All of the stations used in this research are located on 
the same seismic soil class D (deep or soft soil) as defined by the New Zealand Loading 
Standard NZ1170.5:2004 (Standards New Zealand, 2004). Therefore, the influence of soil 
type on PGA could not be studied. With the aim of choosing other influential parameters, the 
magnitudes and hypocentral depths of the 2011 Christchurch earthquake and its aftershocks 
were plotted versus the maximum horizontal PGAs for five stations in Figure 2 and Figure 3, 
respectively, to explore their relationships. 

As expected, PGA is generally increasing with the magnitude (Figure 2). The points that show 
sharp fluctuations are corresponding to very high or low epicentral distances and/or 
hypocentral depths. The PGA value is generally decreasing as the hypocentral depth is 
increasing (Figure. 3) and in this case sharp fluctuations are corresponding to very high or low 
magnitudes and/or epicentral distances. However, the general behavior of these two sets of 
graphs for all the considered stations is the same which shows a correlation between the 
magnitude and hypocentral depth and PGA. The correlations suggest including these 



                                                                           Integrity, Reliability and Failure of Mechanical Systems 

IRF’2013  3

parameters in the input data for developing the network. Furthermore, epicentral distances to 
each station were also included in the input data. 

All the maximum horizontal PGAs that were recorded at the same times by all the six 
considered stations during the 2010 Darfield and 2011 Christchurch earthquakes and their 22 
aftershocks were selected (the total number of records available is therefore 24). The lowest 
magnitude is 4.55 and the highest is 7.1. Table 2 shows the information on the earthquakes 
used in the subsequent analysis. 

The full set of input parameters included magnitude of each earthquake, hypocentral depth of 
each earthquake, PGAs recorded at the stations, distances between the stations, and epicentral 
distances to each station. All the data used to train, validate and test the networks were 
normalized using the following equation to prevent any unwanted effect on the accuracy of 
the networks: 

                                                                                                                     (1) 

where  is the normalized data,  is the original data,  is the minimum data value and 
 is the maximum data value. After the normalization all of the data were within the range 

from 0 to 1. 

 

 

Fig. 1 Location of recording stations in Christchurch 

Table 1 Information about strong motion recorders in Christchurch 

Station Name Code Latitude (°) Longitude (°) Seismic Site Class 

ChCh Hospital CHHC -43.535929 172.627523 D 

ChCh Papanui High School PPHS -43.49451 172.60679 D 

ChCh Resthaven REHS -43.52361 172.63502 D 

Riccarton High School RHSC -43.536172 172.564404 D 

Styx Mill Transfer Station SMTC -43.4675293 172.613861 D 

ChCh Botanic Gardens CBGS -43.53101 172.61975 D 
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 Fig. 2 Relation between magnitude and maximum horizontal PGAs recorded by five stations 
during the 2011 Christchurch earthquake and its aftershocks 

 

Fig. 3 Relation between hypocentral depth and maximum horizontal PGAs recorded by five 
stations during the 2011 Christchurch earthquake and its aftershocks 

 

The first approach for PGA prediction used a single ANN. This ANN had a sigmoid transfer 
function in its one hidden layer and a linear transfer function in the output layer. The hidden 
layer contained 15 neurons and the network was trained with the Levenberg-Marquardt 
backpropagation algorithm. Figure 4 shows the diagram of the network used for the first 
approach. The first approach used the data of five stations, so a 17×120 input matrix 
(24×5=120 samples of 2+3×5=17 elements) was used to develop the network. 

The second approach used an ANNC comprising five networks that were developed each 
using four stations’ data as input and one station other than CBGS. The motivation was to 
remove a possible bias present in ANN caused by excluding only the CBGS station. The input 
data matrix had 17×600 elements. The characteristics of each network in the ANNC are the 
same as the single network except the number of hidden layer neurons which is 20. Figure 5 
shows the diagram of a network used for the second approach. 

To train each network, 75% randomnly selected input data were used, i.e. 90 and 450 input 
vectors for ANN and ANNC, respectively. The rest of the data were used for validation. The 
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purpose of validation is to stop training before overfiting occures. After training of the 
networks, mean squared errors (MSEs) for training and validation were 0.00001 and 0.007 for 
the single ANN, and 0.0004 and 0.002 for ANNC, respectively. These errors are very close to 
zero and show a very small differences between the networks’ outputs and the targets. The 
regression coefficient (R) values for training and validation were 0.999 and 0.969 for ANN, 
and 0.990 and 0.946 for ANNC, respectively. They are very close to 1 showing a very close 
corelation between targets and networks’ outputs. Figure 6 and Figure 7 shows the R values 
for training and validation. 

Table 2 Date, time, magnitude and hypocentral depth of earthquakes and aftershocks in 
chronological order (Darfield and Christchurch main shocks highlighted)  

Earthquake Date Time (UT) Magnitude Hypocentral Depth 

yyyy-mm-dd hh:mm:ss (km) 

2010-09-03 16:35:41 7.10 11 

2010-09-07 19:49:57 5.13 6 

2010-10-15 9:31:40 4.56 7 

2010-10-18 22:32:15 5.03 9 

2010-10-24 2:13:28 4.78 9 

2010-11-13 12:34:06 4.68 7 

2011-02-21 23:51:42 6.34 5 

2011-04-16 5:49:19 5.34 33 

2011-04-16 5:49:22 5.30 11 

2011-06-05 21:09:55 5.54 8 

2011-06-13 1:01:00 5.63 10 

2011-06-13 2:20:49 6.00 6 

2011-06-17 4:21:57 4.55 9 

2011-06-21 10:34:19 5.34 12 

2011-06-21 10:34:23 5.44 8 

2011-07-21 17:39:32 5.09 12 

2011-12-23 0:58:38 5.80 10 

2011-12-23 1:06:25 5.33 10 

2011-12-23 2:18:03 6.00 7 

2011-12-23 17:37:30 5.10 8 

2011-12-31 0:43:00 5.34 100 

2012-01-01 12:27:44 5.00 16 

2012-01-02 5:59:00 5.36 100 

2012-01-06 1:20:58 5.03 5 
 

 

Fig. 4 Diagram of the ANN used in the single network approach 
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Fig. 5 Diagram of a network used in the ANNC approach 

 

Figure 6 Reggresion of single ANN outputs on training (left) and validation (right) data 

 

Figure 7 Reggresion of ANNC outputs on training (left) and validation (right) data 
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To test the predictive power of the developed networks for an arbitrary point, the networks 
were asked to predict the 22 PGAs recorded by the recording station CBGS which was not 
used for traing or validation. Earthquake magnitude, hypocentral depth, epicentral distance to 
each one of five stations, recorded PGAs by each station and the distances between the input 
stations and the CBGS station formed the input data for testing the networks in predicting the 
PGA. The MSEs for such testings were 0.0018 and 0.0052 for the single ANN and ANNC, 
respectively, which are both close to zero. The R values were 0.98 and 0.95 which are close to 
1. Figure 8 shows the match between the network-predicted values and targets for testing the 
single ANN and ANNC. It is noted that the ANNC gave slightly less accurate predictions. 
This can be attributed to the fact that it had less (four) input PGAs compred to five input 
PGAs available to the single ANN. 

a) b)  

Figure 8 Reggresion of network outputs on testing data: a) single ANN, and b) ANNC 

 

USING PREDICTED PGA TO INFER STRUCTURAL DAMAGE 

Based on the recommendations commonly included in design codes, typical bridges 
(excluding cable stayed, suspension or arch bridges) can be modeled as a single degree of 
freedom (SDOF) system. Figure 9 schematically shows this idealization, where k is the 
stiffness, M is the mass and c is the damping coefficient. 

 

Figure 9 Using idealized SDOF system to model bridge structure 



4th International Conference on Integrity, Reliability and Failure 

Funchal/Madeira, 23-27 June 2013 8

 

Figure 10 Typical design spectrum (Wilson, nd) 

Simple seismic design of bridges uses SDOF models and design actions determined from 
elastic design spectra such as the one shown in Figure 10. Such design spectra also take into 
account general geotechnical and structural properties such as soil class, structural period and 
damping. Further provisions for inelastic response and ductility are also included (see e.g. 
Standards New Zealand (2004)). Comparing the design actions (expressed as pseudo 
acceleration) and the predicted PGA at the site using the approach proposed in this study 
offers a quick way of judging structural performance. The validity and reliability of this 
approach relies on the validity and reliability of the designing methods that were used to 
design the bridge since all of the assumptions came from the designing concepts. 

Another approach can be based on correlating PGA, and other ground motion and structural 
metrics such as peak ground velocity (PGV) and displacement (PGD), spectral intensity (SI), 
structural period, to damage quantified using a damage index. This was done in the past for 
gas distribution networks and multi-story buildings respectively by Molas and Yamazaki 
(1995) and de Lautour and Omenzetter (2009). 

 

CONCLUSIONS AND FUTURE WORK 

Two different artificial neural network based approaches for predicting PGA at an arbitrary 
bridge site were developed and examined using the data recorded by arrays of strong motion 
recorders over the city of Christchurch during the 2010 Darfield and 2011 Christchurch 
earthquakes and their aftershocks. The first approach used a single network, while the second 
a committee of five networks. Influential parameters of the domain of study were considered 
and both networks’ testing results confirmed the feasibility of the approaches to predict 
reliably PGA at bridge sites. A simple approach based on design concepts was outlined to 
predict the probability of damage to bridges using the predicted PGA. Another method to 
explore will relate several ground motion metrics and structural parameters to a damage 
index. 

It is intended in the future to expand the proposed methods to a wider area including more 
stations covering different seismic soil classes. It is also planned to develop methods for 
predicting other ground motion parameters such as PGV, PGD, SI and finally correlate them 
to damage to bridges. 
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