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ABSTRACT 

Composite materials used in civil engineering typically contain short metal fibres to reduce 

cracking and deterioration of their mechanical properties, thus efficient approaches to the 

validation of their effective engineering characteristics, as volume fraction of fibres, some 

measure of macroscopic homogeneity, orientation of fibres, etc., are needed. This paper pays 

attention to a magnetic approach, using the Hall effect and the properties of solutions of the 

Laplace equation together with the advanced computational homogenization analysis, coupled 

with the least-square based optimization technique. 

Keywords: building materials, metal fibre composites, non-destructive testing, inverse prob-

lems, computational homogenization. 

 

INTRODUCTION 

Advanced building structures, as discussed in (Cunha, 2011), as well as other structures of 

civil engineering, frequently use materials as silicate composites, reinforced by metal parti-

cles, typically short fibres, preventing the tension stresses and strains as sources of undesir-

able micro- an macro-cracking. Mechanical behaviour of such composites is determined by 

the choice of fibre properties and their volume fraction, location and orientation in the matrix, 

sensitive to the technological procedures (as special compaction) and to the early-age treat-

ment – cf. (Yilmaz, 2010) and (Soulioti, 2011). Since the technological requirements are 

rather demanding, some reliable a posteriori validation of expected solid material structure is 

needed. The employment of the destructive approach relies usually on the separation of parti-

cles, taken from the early-age matrix, alternatively obtained from the crushed part of the exist-

ing structure, in the laboratory; consequently the volume fraction of particles can be evaluated 

accurately, but any information related to the original orientation of particles is missing. 

Moreover, such experiments are not allowed by national and European technical standards for 

some types of structures. This is the motivation for the development of non- or lower-invasive 

approaches to the analysis of material characteristics of metal fibre composites, relying on 

some (geometrically, physically, etc.) distinguishable properties of a matrix and particles. 

One possible choice for the detection of volume fraction, location and orientation of particles 

in a matrix without any damage is offered by radiographic methods, discussed in (Hobst, 

2013), supplied with image processing techniques, applying edge detection algorithms, fast 

Fourier transform, etc., by (Vala, 2012). However, such approach is available only to material 

specimens of limited thickness (not to massive structures), under rather strict safety provi-

sions. Several alternative methods have been presented in the last decade: namely (Van 

Damme, 2004) estimates the effective material permittivity employing a coaxial probe to-
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gether with microwave reflectometry techniques, (Ozyurt, 2006) makes use of the AC-

impedance spectroscopy, (Lataste, 2008) performs special low-frequency electrical resistance 

measurements and  (Faifer, 2009) develops a method based on impedance-over-frequency 

measurements, employing certain two-electrode probe, supported by the numerical FFT (fast 

Fourier transform) computations. Recently (Faifer, 2011) and (Wichmann, 2013) exploit the 

ferromagnetic behaviour of metal particles to evaluate their volume fraction; the deviation of 

measurement values gives basic information to the required homogeneity and isotropy. 

We shall pay attention namely to analysis of behaviour of a material specimen or a whole 

massive structure in the artificial magnetic field, thanks to quite different (relative) magnetic 

permeability of a non-metal matrix and metal particles. Let us notice that, under some physi-

cal simplifications, neglecting the effect of other physical, chemical, etc. processes and exter-

nal influences, a very similar approach is available for the electric field where the (relative) 

electric permittivity replaces the magnetic permeability in the analogous boundary value 

problem for a Laplace-type equation. However, to be able to exploit the database of meas-

urement results from the Department of Building Testing at BUT (Brno University of Tech-

nology), obtained from the Hall probe with permanent magnets, as evident from the left-hand 

part of Fig. 1, detecting intensity of magnetic field in the classical fibre concrete, we shall 

assume the presence of a (nearly) stationary magnetic field in the specimen, whose radial 

symmetric geometric model (neglecting the processes inside the probe) is presented on the 

right-hand part of Fig. 1. We shall show (at least for a good experimental arrangement): 

i) that the numerical solution of a boundary value problem for the stationary distribution of 

a magnetic field (caused by the presence of a permanent magnet in the Hall probe) with 

some effective (macroscopic) value of magnetic permeability can be avoided at all,  

ii) how such effective (homogenized) values can be obtained under the assumption that the 

(deterministic or stochastic) distribution of particles in a matrix and their (relative) 

permeabilities are known in advance, 

iii) how the analysis i) helps us to solve the inverse problem of identification of the volume 

fraction of particles and some material homogeneity and isotropy characteristics. 

The problems connected with i), ii), iii) will be discussed in three following sections of this 

paper, accompanied by an illustrative example. 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1  The Hall probe (left image) and the related computational scheme (right image). 
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PHYSICAL AND MATHEMATICAL BACKGROUND  

Following the experimental setting by Fig. 1, let us consider the magnetic field strength H  

[A/m], the magnetic potential B  [N/(A·m)]  and the scalar magnetic potential  [A] on cer-

tain (rather special) domain   in the 3-dimensional Euclidean space 3R , supplied by the Car-

tesian coordinate system 
1 2 3( )x x x x   ; all symbols 1 2 3( )x x x     and    

will express standard Hamilton and Laplace differential operators. The system of Maxwell 

equations can be reduced to      

 0     H     on ;  (1) 

for all details see (Hobst, 2011). Only one constitutive relation is needed: 

 B H    on ,  (2) 

containing some effective permeability  [N/A
2
]; in this section we shall suppose that   

(from the macroscopic point of view) is a given positive constant. The natural Neumann 

boundary condition is B b   on a suitable part of the boundary  of  , later referred as 

 , supplied locally by the unit outward normal 1 2 3: ( )      ; non-zero prescribed b  can 

occur thanks to the magnetization of the permanent magnet. Applying (1) and (2), we have 

/            H B  which gives  

 /     b    on  . (3) 

It is reasonable to prescribe the homogeneous Dirichlet boundary condition on the remaining 

part of   (among others, to force the unique setting of  ).  

In the simplest case, b  can be identified piecewise with some real constant b  and piecewise 

with zero on  . In particular, for the cylindrical magnet located in the cylindrical hole in a 

cubic material sample, we can consider the boundary condition (3) with b b  on the contact 

with the magnet, otherwise with 0b  . In the case of 2-axes symmetrical geometrical con-

figuration we are allowed to set 0b   also on symmetry axes (the magnetic fluxes perpen-

dicular to such axes are not taken into consideration). Motivated by Fig. 1, showing the cylin-

drical hole of the same (positive) radius 0r  as that of the magnet, considering the cylindrical 

coordinate system 1( )x r    with 2 cosx r  , 3 sinx r  , for 0r r  we consequently obtain 
2 2 2 2

1/ / ( / ) /           x r r r ; this seems to be a good starting point for non-

expensive two-dimensional computational simulations, at least for sufficiently big specimens 

(the index 1 of 1x  on Fig. 1 is omitted). 

Fig. 2 shows the results of such simulations, performed in the COMSOL environment, apply-

ing the finite and infinite element technique with triangular meshing. The upper left scheme 

shows the initial mesh and applied boundary conditions. Thanks to the linearity of (1), (2), 

(3), the value of b  does not affect the isolines on the remaining color graphs. The graph un-

der the scheme highlights large values of   near the magnet only; this justifies the applica-

tion of simplified boundary conditions (far from such phenomena) to computational simula-

tions, but restricts all reasonable measurements of b  to certain area close to the magnet. The 

remaining upper graphs demonstrate that the distribution of the size of H  (in the standard 

Euclidean norm) is more transparent in the logarithmic scale. The remaining lower graphs, 

both in the logarithmic scale, present the particular components of H . 
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Fig. 2  Results of the computational simulation of the Hall probe in COMSOL. 

Although some irregularities visible on Fig. 2 seem to need more detailed explanation (name-

ly of their physical or numerical sources), the most important conclusion is that the Hall 

probe, located in the drilled hole, as an invasive element in the measurement systems, should 

not influence the measured quantity b  substantially. Moreover, these results are in good cor-

relation with those obtained from the original software code referring to several functions 

taken from the pde toolbox of MATLAB, although some slightly modified boundary condi-

tions have been applied, as presented in (Hobst, 2011). 

The general differential formulation of the boundary value problem (1), (3) admits an easy 

conversion to the variational one. Applying the standard notation of Lebesque and Sobolev 

spaces, for the function space V , introduced as the subspace of 2

1 ( )W  satisfying all needed 

homogeneous Dirichlet boundary conditions, thanks to the Green-Ostrogradskiĭ theorem (on 

integration by parts) we are allowed to rewrite (1) in the form 

 ( ) [ , ] 0              for all  V ; (4) 

(.,.)  here denotes the scalar product in the Lebesgue space 2 ( )L  or 2 3( )L  and [.,.]  the sca-

lar product in the Lebesgue space 2 ( )L . Inserting (3) into (4), we receive 

 ( ) [ , ]      b     for all  V . (5) 

Working with the well-known magnetic constant 7

0 4 10     N/(A·m) together with the new 

quantity 0: /  b  and with the constant 0: /    (which is the dimensionless relative effec-

tive permeability), we can replace (5) by 
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 ( ) [ , ]/           for all . V  (6) 

For some reference (calibration) values * *( , )  , e.g. those corresponding to the pure matrix 

without any particles, under the same experimental setting, we have then the very simple rela-

tion 
* */ /     between our values ( , )   and * *( , )  , with no duty to solve (6) numeri-

cally at all. 

 

COMPUTATIONAL HOMOGENIZATION  

To evaluate the relative permeability   from that of the matrix c
 (most frequently concrete 

and similar materials) and that of the particles s
 (e.g. steel fibres) is in general a complicated 

problem, whose solution (without additional simplifications) is not available. For simplicity, 

let us now suppose that our composite has an exactly an Y -periodic microstructure for the 

unit cube 3

1 2 3{( , , ) : 1/ 2 1/ 2 for all {1,2,3}}     iY x x x R x i  (the obvious generalization 

to Y  introduced with / 2a  instead of 1/ 2  here for an arbitrary positive a  can be left to the 

reader) and belongs to ( ) L , i.e. ( ) y  is measurable (in the Lebesgue sense) and bounded 

almost everywhere on   and ( ) ( )   iy y e  for every 3y R  and any {1,2,3}i  where ie  

denotes the unit vector corresponding to the i -th Cartesian coordinate. Following Chap. 6.1 

of (Cioranescu, 1999), we have to find all solutions 1,2

# ( ) i W Y  (with {1,2,3}i , an index 

#  highlights the periodicity) of the local problems 

 ( ( ) ( )( ( ))) d 0      i i

Y

y y e y y     for all 1,2

# ( )W Y . (7) 

The result of the homogenization procedure, applied to (7), i.e. that using the two-scale con-

vergence arguments by Chap. 9.2 of (Cioranescu, 1999), is then a matrix with , {1,2,3}i j , 

expressed, using the notation of mean values .  on Y (whose volume, i.e. the mean value of 

1, is equal to 1) and the Kronecker symbol .. , as 

 ( ) ( ) ( ) /       ij ij j iy y y y  .   (8) 

Nevertheless, instead of (5) we have the direction-sensitive limit equation   

 
3

, 1

( ) [ , ]    


   ij i j

i j

    for all  V . (9) 

The smallest difference between ij  from (8) and some *  ij ij  (with an a priori unknown 

value * ) in an appropriate (usually spectral) matrix norm is then a natural measure of materi-

al inhomogeneity. 

Since (7) is a linear partial differential equation with periodic boundary conditions, it is seem-

ingly not difficult to obtain a sufficiently accurate numerical approximation of its solution. 

However, we have simple functions ( ) y  with quite different values c  and s , which can 

force unpleasant numerical oscillations. (Kristenson, 2003) derives, coming from the equation 

of the type (9), certain (rather complicated) semi-analytical results for regular spherical inclu-

sions, under some additional assumptions degenerating to the classical Maxwell-Garnett mix-

ing formulae. Other physically motivated approaches to the improvement of this formula, to 
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handle the case of multiple scattering, even for other then spherical particles, have been de-

veloped in (Whites, 2000), (Wu, 2001), (Whites, 2002) and (Mallet, 2005). Recently, as a 

direct generalization of (Kristenson, 2003), (Pieper, 2012) tries to determine a suitable unit 

cell to represent a non-periodic medium. From the point of view of mathematical homogeni-

zation theories, this requires to replace the Lebesgue measures in (7), (8) by some much more 

general (Borel, Young, Radon, etc.) measures, including probabilistic ones: namely (Nguet-

seng, 2011) applies the Gelfand representation theory and the deep analysis of spectra in Ba-

nach algebras to introduce the so-called weak and strong σ-convergence on (rather abstract) 

homogenization structures and to derive their properties beyond the periodic and deterministic 

assumptions, as a (not very transparent) substantial generalization of the two-scale conver-

gence, studied in (Cioranescu, 1999).  

Nevertheless, the above mentioned general approaches are not ready to be implemented in 

efficient numerical calculations, even as elements of more complicated identification algo-

rithms. Such calculations should apply e.g. stochastic finite elements, or, alternatively, Sobol 

sensitivity analysis with Monte Carlo simulations – cf. (Kala, 2011). Fortunately, for suffi-

ciently low volume fractions   of particles, a more simple approximation by (Giordano, 

2003) is available, based on the generalization of the Maxwell-Garnett formula for spheres to 

ellipsoids, making use of the mixture theory for randomly oriented particles, including some 

limit cases. Just in our case the description of metal fibres as ellipsoids of rotation (to avoid 

non-smooth boundaries) can be acceptable. The ideal aim seems to be, under some additional 

assumption on the orientation of particles, to find some explicit monotone and continuous 

dependence between the effective permeability   and the volume fraction   (which substi-

tutes both the exact description of a periodic structure in (7) and its hypothetical stochastic 

generalization).             

Let   be some probability density function defined on a unit sphere S  (usually a function of 

an azimuthal and a polar angle). Let us suppose that all ellipsoidal particles have the same 

size and shape. The crucial relation of Part 3 of (Giordano, 2003) (in our notation, for mag-

netic fields instead of electric ones), recommended for 1  , is 

 ˆ( )       ik c s c ik     for all  , {1,2,3}i k  (10) 

where 
3

1

: / ( ( ))    


  ik c ji jk c j s c

j

n n L , ̂ik  is the mean value of ik  evaluated on S , 

1 2 3( , , )a a a  is the triple of non-increasing positive lengths of axes of all ellipsoidal particles, 

1 2 3( , , )j j jn n n  for {1,2,3}j  are the components of unit vectors corresponding to these 3 axes 

(principal directions) and  
 1

2 2 2

1 2 3 1 2 3

0

: ( / 2) ( ) ( )( )( ) d

 

    j jL a a a s a s a s a s a s . To obtain 

reasonable results for more realistic small values of  , some Bruggeman-type approximation 

procedure should be applied to (10). (Giordano, 2003) works (after more general introductory 

considerations) with the uniform distribution of   only, thus the mean value of ji jkn n  is equal 

to 1/ 3  for any {1,2,3}j ,   can be used instead of 11 22 33     (and 12 13 23 0     ), 

both indices of ̂ik  can be omitted, too, and the Bruggeman-type relation generates a simple 

form of one ordinary differential equation 

 ˆd /( ) d /(1 ) .       s      (11) 
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Especially for 2 3a a , 
1 2: /  a a  the analysis of (11) gives 

 

23 (1 2 )(2 3 ) 2(3 1) ((2 3 )(1 3 ))

1

2

1
  


  

     

   
     

   

L L L L L L

s c

s c s

M

M
 (12) 

where 1 (1 3 ) (2 3 )    c sM L L  and 2 (1 3 ) (2 3 )     sM L L  contain a factor L , de-

termined from the relation 3: (2 ln(( ) /( )) /(4 )         L  with 2 1/ 2( 1)   . In par-

ticular, for a (theoretically) infinite length and zero diameter of particles we receive 1 3L   . 

However, no simple generalizations of (12) are available. (Giordano, 2003) removes the as-

sumption 2 3a a ; the resulting formula is much more complicated than (12). (Giordano, 

2008) extends these results to very special types of coated and graded particles. (Sushko, 

2009) generalizes (11) to anisotropic media, even for an arbitrary finite number of types of 

particles, and sketches the derivation of certain semi-analytical results similar to (12);  for 

non-uniform distributions of   unpleasant elliptic (and even more complicated) integrals 

cannot be avoided, which obstructs to get transparent formulae suitable to practical calcula-

tions. 

 

IDENTIFICATION OF MATERIAL CHARACTERISTICS 

The main requirement from experimental research is to identify basic material characteristics 

from sufficiently simple measurements. For the sake of simplicity, let us now consider a 

(nearly) macroscopically homogeneous material with a scalar characteristic   (and constant 

 , not needed here) with 1 c  (no magnetic properties in the matrix can be observed). Let 

us mention that a similar assumption on s  is not reasonable: its value, namely for steel, var-

ies substantially and may be not guaranteed by the producer, although some recommended 

values like 1000 s  can be found in the literature. Following the discussion under (6), we 

are able to set   from   (thanks to some calibration values) in a very simple way, thus we 

can interpret   as measurement results. Thus (12) introduces a real function f  of two real 

variables, namely ( , )   sf , for a set of couples * *( , )   available from magnetic meas-

urements, corresponding to ( , )  . Consequently f  can be understood as a function of just 

one still unknown variable s ; in the following text the prime symbol denotes a derivative 

with respect to s  everywhere.  

Let H  be an appropriate Hilbert space, supplied by a scalar product .,. , e.g.  mH R  for 

some integer m  (finite number of measurements) or 2 ( ) wH L I , introduced as a weighted 

Lebesgue space on a real interval I , equipped with some weight function w . Then, following 

the least squares approach, it is reasonable to minimize an error  

 ( ) ( ) ( ) / 2          s s sE .     (13) 

Differentiating (13), we have easily ( ) ( ) ( )     
   s s sE ; the second differentiation 

then yields ( ) ( ) ( ) ( ) ( )           
       s s s s sE  where (quite formally) all 

values (or components) of   in H  are equal to 1. The iterative procedure, introduced in gen-

eral as 1 ( )     k k k k

s s sE G  for {0 1 2, }  k … , is then applicable with the aim  k

s s  in 



4
th
 International Conference on Integrity, Reliability and Failure 

Funchal/Madeira, 23-27 June 2013 8 

R  for k  : here 1 1( ( ) ( )) /( )       k k k k k

s s s sG F F  for {1 2, } k …  assuming that 

1( ) ( ) 0    k k

s sF F , applying the regula falsi method (two initial estimates are needed), alter-

natively ( )k k

sG F  for {0,1 2, } k … , applying the Newton method (one initial estimate 

is needed). 

If no calibration data are available, at least one additional unknown parameter must be con-

sidered in the minimization problem analogous to (13). The more general case 

( , , , )    c sf p  for symmetric square matrices  of order 3 (although c
 and s

 are still 

scalars) and some vectors p  of real parameters, needed to introduce  uniquely,  involves 

several types of difficulties. Firstly, the calibration argument following (6) is not valid, at 

least in such trivial form: more measurements related to various directions are clearly re-

quired. Moreover,   depends on several (mutually independent) real variables, thus the 

global minimization of (13) is a more delicate problem. Finally, a serious obstacle comes 

from the impracticability of efficient evaluation of f  from some algebraic formula like (13).     

 

IILLUSTRATIVE EXAMPLE 

As an illustrative example, let us study the identification of volume fraction   for the fibre 

glass composite, whose matrix is prepared from glass crumble compound with acrylate resin; 

its production technology should guarantee random distribution of applied steel particles of 

(nearly) cylindrical particles of (approximate) length 0.1 m and radius 0.5 mm. Apart from 

mechanical, thermal, etc. properties of such composite, one its non-negligible advantage of 

presentation is the transparency (and certain aesthetic level) of cube specimens, documented 

by the small photo included in Fig. 3. The mimimization of a least squares error (13) from 

particular experiments should determine s  (neglecting a potential non-zero term 1 c ) and 

identify the dependency between   and */   by (12). The residual error by (13) should be 

explainable from random dispersion of measured values by statistical means, or, alternatively, 

refer to violation of our assumption, as the macroscopic inhomogeneity in the first place. 

Three series of 26 experiments with various distances between permanent magnets in the Hall 

probe and measurement points (contained in the sensitive region detected by Fig. 2) have 

been made for 3 cases with guaranteed   equal to 0.5%, 1% and 1.5%; *  was taken from 

another experiment with the same material without metal reinforcement. Consequently our 

choice for (13) is just 3 26H R  (without any special weights). The original software have 

been developed in the MATLAB environment to construct the formal (first and second) de-

rivatives E  and E , whose evaluation is needed in the iterative procedure, using the sym-

bolic toolbox of MATLAB (referring to the core of MAPLE); this makes it possible to pre-

pare the software code quite independently of the choice of the specific formula (13), without 

any additional functions from MATLAB (or other) optimization toolboxes. The method of 

regula falsi is implemented as a starting one, with the adaptive switch to the Newton method, 

whose quadratic convergence rate can be expected. The result of an identification procedure is 

evident from the graph on Fig. 3. 

Thanks to the implementation of rather thin and long particles, only a slight nonlinearity in 

(12), understood as a relation between   and  , occurs here; even the simplification 1 3L    

leads to very similar results. However, the Hall probe experiment has not distinguished all 

results between 3 classes of volume fractions sharply, which is reflected by the numerical 
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identification procedure, too. It is not easy to decide what part of such dispersion of results 

can be explained by probabilistic considerations and what is caused by macroscopic anisot-

ropy, inhomogeneity or violation of other simplifying assumptions.    

 
Fig. 3  Volume fraction   as a function of  */   from the identification procedure based 

on the least squares approach and on the regula falsi and Newton iteration methods in 

MATLAB. The small photo shows the surface of the tested fibre glass specimen.      

 

CONCLUSIONS 

This paper should be understood as an introductory study to the non-destructive or low-

invasive approach to the macroscopic identification of content and randomness of location 

and orientation of small  particles in the structure of building materials, making use of their 

magnetic properties. The crucial point of all such considerations is the development of a ho-

mogenization procedure, specific to the analyzed class of materials, including its formal veri-

fication and its validity range. This leads to non-trivial problems of both physical and mathe-

matical analysis, uncovered by commercial software tools, whose deeper study is very desir-

able.  

Still other difficulties consist in the needed separation of errors of various kinds, whose rough 

classification due to their origin could be:  

i) random errors generated by the measurement device, 

ii) errors caused by the violation of macroscopic material homogeneity and / or isotropy, 

iii) errors coming from various physical and mathematical simplifications, connected with 

the inexact validity of the Laplace equation (5), supplied by very special boundary condi-
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tions, as well as with the (above mentioned) conditions for proper (two-scale conver-

gence, mixture theory, etc. motivated) homogenization,  

iv) errors brought from disturbing physical, chemical, etc. processes, neglected in our con-

siderations at all, e.g. those needed for the scale bridging by (Steinhauser, 2008) or (Ko-

zák, 2011),  

v) numerical errors of the computational tools, due to their finite precision.  

Moreover, some requirements to measurement conditions seem to be in contradiction: we 

need to obtain large values of the magnetic field strength, but sufficiently far from the perma-

nent magnets, moreover no significant magnetic fluxes from the specimen or the real structure 

into the environment are allowed, etc. The analysis of this type belongs to research priorities 

of the authors for the near future, namely as a part of the project of the specific university re-

search in the Czech Republic, referenced below.    
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