
 Integrity, Reliability and Failure of Mechanical Systems 

IRF’2013  1 

3967 
 
 

ANALYTICAL AND NUMERICAL ASSESMENT OF FATIGUE 

PROPERTIES IN ROLLING BEARINGS 
 
Paweł Romanowicz

1(*)
, Bogdan Szybiński

1
 

1Institute of Machine Design, Cracow University of Technology, Kraków, Poland  
(*)

Email: promek@mech.pk.edu.pl 
 
 

ABSTRACT 

The aim of the work is to create an algorithm of fatigue life prediction for typical rolling 
bearings. The proposed approach makes use of various, well established hypothesis for 
multiaxial fatigue applied in engineering calculations. In the first part of the work the 
theoretical solutions for different contact problems are compared with the numerical ones. 
The respective numerical results are obtained with the use of finite element modelling 
(ANSYS software). Then, an algorithm for fatigue life prediction is demonstrated. The results 
of the proposed analysis are compared with those given in rolling bearings catalogue. 

Keywords: contact problem, rolling bearing, fatigue, finite element method. 

 

INTRODUCTION 

Experimental fatigue tests of rolling bearings are expensive and time-consuming. For typical 
load, the fatigue life of rolling bearing can be predicted using well-known relationship based 
on experimental tests proposed by Palmgren & Lundberg (Lundberg, 1947; Lundberg 1952): 
L=(C/P)k, where L is the fatigue life, C is the basic load rating, P is the applied external load 
and k is exponent of the life equation. The application of multiaxial hypotheses in estimation 
of rolling bearings life time can be an alternative to the above given traditional formulae. 
These criteria (Papuga, 2011; Papadopoulos, 1997) require only the distributions of stresses in 
investigated parts of the bearing and material parameters, which can be obtained in common 
fatigue tests performed for the fully reversed bending and the fully reversed torsion. 
Subsurface stress distribution in the most dangerous points in rolling bearings can be 
calculated using finite element modeling (Romanowicz, 2012; Szybiński 2012). In case of 
ball (rolling in a non-conforming groove) or roller bearings theoretical solutions proposed for 
elliptical (Sackfield, 1983) or line contact (Radzimovsky, 1953) can be used alternatively, 
which can help to eliminate time consuming numerical calculations.  

 

FATIGUE PROBLEMS OF ROLLING BEARINGS 

Due to the cyclic contact the non-proportional high subsurface stresses occur in the rolling 
bearings. Due to this fact, the fatigue failure is the most important problem in such elements. 
However, the level of fatigue in rolling bearings cannot be calculated using classical theories 
based on fatigue diagrams. In this situation, the application of multiaxial high-cycle fatigue 
criteria offers certain possibilities of fatigue life prediction (Romanowicz, 2012). Such 
criteria, which can be based on the different approaches, reduce the complex stress state to the 
equivalent form, which in many cases is compared with the fatigue limit for the fully reversed 
torsion. Moreover, almost all criteria require only two standard fatigue tests – the fully 
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reversed bending ( )1−f  and the fully reversed torsion ( )1−t . However, the largest difficulty is 

to select hypothesis which is reliable for investigated problem (Romanowicz, 2013). For 
analysis of rolling bearings the criterion given by Papadopoulos (Papadopoulos, 1997) was 
selected. Using this hypothesis, many rolling contact problems were investigated (railway 
wheels, cylindrical crane wheels) and some report can be found in the literature (Bernasconi, 
2006; Romanowicz, 2013). This criterion is proposed for hard metals and gives the most 
conservative results from the popular group of criteria which is very often used for rolling 
contact fatigue analysis (Romanowicz, 2013). It is based on an average measure of resolved 

shear stress amplitude aT  and includes the maximal hydrostatic stress max,Hσ  in the below 

formula: 
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More information and techniques about this criterion can be found in (Romanowicz, 2010). 
Other probabilistic and deterministic life prediction models for rolling bearings can be found 
in Ref. (Sadeghi, 2009). 

 

ANALITYCAL SOLUTION  

The general methods for determining the size of the contact area and the distribution of 
stresses for frictionless surfaces and perfectly elastic solids are based on the Hertz theory 
(Hertz, 1881). In the practical application of machine design the two following types of 
contact can be distinguished:  

• circular or elliptical contact in which the bodies initially have one contact point 
before the deformation (Fig. 1a),  

•  line contact in which bodies have straight line contact before the deformation 
(Fig. 1b). 

The first one appears in ball bearings, where balls are rolling in a non-conforming groove. 
The similar situation appears in spherical bearings, railway wheels moving along convex-
headed rails and in contact of two cylinders with different diameters and perpendicular axes. 
The second one exists in case of contact of parts in the roller bearings, and between the gear 
teeth, etc. 

 
Fig.1 Principal contact types with the assumed local coordinate system 
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In the general case of the compression of two spherical elastic bodies, the semi axes of 
contact ellipse and the maximal contact pressure can be calculated from the solution given by 
Timoshenko and Goodier (Timoshenko, 1951). However the following assumptions must be 
fulfilled: 

• bodies in contact are made of homogeneous and isotropic materials, 
• bodies in contact have smooth surfaces with regular curvatures in the contact area, 
• small elastic deformations of the bodies in the contact area, 
• the loading acts in perpendicular direction to the contact surface, 
• the radii of curvatures of the bodies are very large in comparison with the radius of the 

boundary of the contact area, 
• no friction appears between surfaces (only normal stresses occur at the contact 

surfaces). 
In order to calculate semi axes of contact ellipse the constants A and B, which depends on the 
contact condition, have to be found from the formulas: 
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where 

R11, R12 – are the minimum and the maximum principal radii of curvatures of the first body at 
the initial contact point, respectively, 

R21, R22 – the corresponding values of radii for the second body, 

ϕ - the angle between the planes of principal curvatures of the two surfaces. 

The magnitudes of the semi-axes of the contact area can be calculated as follows:  
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ν, E – Poisson’s coefficient and Young modulus, respectively. 

The maximal contact pressure po caused by the external compressive force F appears at the 
contact center and can by calculated as: 

,
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     (6) 

and the distribution of the contact pressure in the elliptical contact area can be expressed as: 

( ) ( ) ,,,1, 2222 byaxbyaxpyxp o ≤≤−−=    (7) 

where (x,y) is the local coordinate system with the origin at the contact center (initial point of 
contact – Fig. 1). 
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The values of m and n coefficients for some points (Fig. 2) can be found in the book 

(Timoshenko, 1951) for oo 90;30∈θ with the resolution o5 , or in (Cooper, 1968) for 

oo 90;1∈θ with the resolution o1 . However the continuous functions of m and n (Fig. 2), 

which are necessary for numerical calculations, were proposed by the authors as follows: 
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where the auxiliary angle θ (in rad) was defined as: 
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Fig. 2 The values of m and n coefficients for different contact conditions of two compressed elastic bodies. 

 

In the simple cases of contact, the semi-axes of contact and maximum pressure can be easily 
calculated using the Hertz theory. The additional parameters – the relative curvature (1/R*) 
and E* were introduced: 
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In the case of circular contact, the axes of contact are equal and are calculated from: 
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In the case of line contact where b is the one-half of the width of the contact strip for contact 
of two cylinders with parallel axes (Johnson, 2004):  
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Some useful solutions of such kind of contact were given by Hüber (Hüber, 1904) and 
Hamilton and Goodman (Hamilton, 1966).  

In the case of elliptic contact it is more difficult to obtain explicit solution. However, if the 
distribution of contact pressure is known and assumption of the Hertz contact is fulfilled it is  
possible to calculate the stresses at any point over the contact area. First solution of this 
problem was proposed by Belayev in 1924 (Belayev, 1924) and Thomas and Hoersch 
(Thomas, 1930). They obtain distribution of subsurface stresses on the axis of symmetry by 
means of elliptic integrals. Another important theory including solutions determined by 
Fessler and Ollerton (Fessler, 1957) and Ollerton and Morey (Ollerton, 1963) was given by 
Sackfield and Hills (Sackfield, 1983). Using this theory the subsurface stresses over the 
elliptical contact area can be calculated. Some stresses zyxiiz ,,; =σ can be calculated as 

below: 
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where abkasazzayyaxx aaa ===== ,,,, 22 γ  and γ  is the largest root of 
the equation:  
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The second set of the subsurface stresses can be calculated using equations: 
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where the functions ijφ , 3φ , ijχ  were given by Sackfield and Hills (Sackfield, 1983). 

However, when the above formulas are in use the second set of subsurface stresses can be 
calculated only over the contact area.  

The analytical method for determining the stress components in the case of the line contact 
is based on the Belayev’s 3-D solution of the problem of two cylinders of infinite length 
pressed together (Belayev, 1924). The stresses on planes perpendicular to the coordinate axes 
can be calculated using following equations: 
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where q is loading per unit length of contact strip and λ and µ are Lame’s constants, α and β 
are elliptic coordinates with transformation equation in respect to x-z axes (see Fig. 1b) and 
are given below: 
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The more detailed analysis with some useful information was given by Radzimovsky 
(Radzimovsky, 1953). 

 

NUMERICAL FEM MODELS 

The exemplary numerical studies were performed for two typical Hertz problems - circular 
and line contact. The first one, in which two rigid, ideally elastic balls are pressed to each 
other, was used for verification of the analytical algorithm for elliptical contact. The two balls 
were of the same radii and material. The high-order axisymmetric elements (ANSYS, 
PLANE82) and boundary conditions presented at Fig. 3 were used during these calculations. 
The anti-symmetric τxz shear stress distribution (the butterfly effect) with the maximal values 
in the P-L points was observed and is presented in the Fig. 3. Moreover, the maximal shear 
stress amplitude occurred on the radius of these points during the rolling contact.     

In the second FEM model, which was used for verification of the algorithm for line contact, 
an ideally elastic cylinder was pressed to a rigid plane (Fig. 4). Due to the symmetry of 
investigated geometry only half of the model with plane strain assumption was computed. 
Moreover, the irregular meshes of high order finite elements (PLANE 82), with strong 
concentration of elements with regular shape in the area of stress concentration were used in 
both numerical models. The subsurface shear stress and the equivalent von Mises stress 
distributions were presented in Fig. 5, respectively. The maximal von Mises stress (Fig. 5) 
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occurs in the Belayev point. This point is the most dangerous in the case of static contact of 
two bodies pressed by cyclic loadings. However, in the case of rolling contact, the cracks 
initiate closer to the P-L points in which the largest amplitude of shear stress caused by rolling 
occurs. 

 

Fig. 3 Model of two compressed balls, detail of finite element mesh with local coordinate system and shear stress 

τxz distribution (stress in MPa) 

 

 
Fig.4 Model of contact of cylinder with flat plane, detail of finite element mesh with local coordinate system 

For the control the subsurface stresses in four arbitrary chosen points for each model were 
analysed and compared with analytical solutions (for details see Fig. 1). These points were 
chosen in a near contact zone and one of them was the commonly used Palmgren-Lundberg 
(P-L) point, in which the maximum amplitude of the shear stress appears. These numerical 
results were compared with the respective theoretical ones. In order to estimate the solution 
quality the error in the form as below was proposed: 
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The summary of obtained results is given in Table 1 and as it can be seen very good 
agreement between theoretical and numerical results was achieved. 

Table 1 Values of errors at the studied points for respective of stress tensor 

Location of point [mm] ∆∆∆∆σσσσx
ERR
  ∆∆∆∆σσσσy

ERR
  ∆∆∆∆σσσσz

ERR
  ∆∆∆∆ττττxz

ERR
  Remarks model 

x  y z [%] [%] [%] [%]   

1.62 0 0.63 1.0 1.3 5E-2 0.9  
0.98 0 0.48 0.4 0.6 0.2 6E-2  
0 0 1.33 1.0 1.4 0.2 - 

(ττττxz =0MPa) 
 

1.48 0 2.66 2.1 - 
(σy≈ 0MPa) 

0.4 0.4 (P-L) 
point 

Point contact 
(two balls 
pressed 
together) 

a =b = 1.85 mm 
po = 1362 MPa 

6.43 0 3.53 2.0 1E-4 2E-3 2E-3  
0.33 0 0.99 2.0 2.2E-3 9E-4 2.02  
11.36 0 10.09 0.06 0.03 2E-3 8E-4  
5.29 0 3.02 2.4 0.7 0.4 0.1 (P-L) 

point 

Line contact 
(cylinder with 

plane) 
b ≈  6 mm 

po = 1000 MPa 

 

 
Fig. 5 The subsurface shear stress and the von Mises stress distributions in the cylinder pressed to flat plane  

 

ANALYTICAL METHODS OF ROLLING BEARINGS CALCULATION 

The presented mathematical models for elliptical contact and line contact can be applied 
for the investigations of the fatigue life prediction of elements working in contact conditions. 
In several cases it allows for the fast calculations of subsurface stresses without the 
application of numerical methods. The subsurface stress distribution for circular contact can 
be also calculated using solution given by Sackfield and Hills (Sackfield, 1983).  

In the proposed models only the radii of the bodies curvatures, load per one rolling element 
and fatigue properties (the fully reversed bending and the fully reversed torsion) of the 
material are necessary. The mathematical models do not take into account friction, sliding and 
lubrication effects which can occur in rolling bearings. The friction between the rolling 
bearings is caused by different sources such as: strain hysteresis, internal friction in the 
lubricant, sliding and micro-sliding (caused by strains, contact geometry, gyroscopic moment, 
etc.), sliding between rolling elements and separator and others. The friction coefficient for 
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rolling contact is very small and takes values from range of 41010 −⋅=µ  for the radial ball 

bearing to 41040 −⋅=µ  for the roller thrust bearing (Krzeminski-Freda, 1989).    

The sliding effects between rolling element and rings can be caused by different 
circumferential rotational speeds of the roller and the rings contact points. It depends on the 
distance of these points from the axis of bearing rotation and relationship of the curvilinear 
pitch-surface generator of rolling elements. The oscillating micro-slip effect at the interface 
between two bodies, which can be attributed to difference velocities of the bodies in contact, 
is the source of vibration and corrosion, which results in the surface damage (fretting). More 
information about investigation of fretting failure of rolling bearing can be found in (Johnson, 
2004). The above described phenomena do not have significant influence on the subsurface 
fatigue failure.  

In the case of thrust rolling bearing, the force acting on one rolling element (ball or roller) 
can be calculated from the formulae given below 

,
)sin(α⋅⋅

=
Zi

F
Q a      (23) 

where: Fa is the axial load of thrust bearing, i is the number of rows of rolling element, Z is 
the number of rolling element in one row, α is the angle between the radial and the axial 
components of the force. 

Above equation can be used if the force is acting in the symmetry axis of bearing. However, 
the off-centre loading sometimes can occur. This force should be taken into account when the 
arm of the load in relation to the mean radius of the bearing rm is larger than 0.6 (point 
contact) or 0.5238 (line contact). In such a case, the external loading is transferred by smaller 
number of rolling elements and maximal axial loading acting at rolling element (Qmax > Q) 
must be calculated (Krzeminski-Freda, 1989).    

In the case of radially loaded rolling bearings by radial force Fr, the most heavily loaded 
ball or roller element is carrying the force: 

 ,
)cos(

point)(line,
max α⋅⋅

⋅
=

Zi

AF
Q

nr
     (24) 

where: An(line) is the coefficient of the maximal loading of the most heavily loaded roller 
element and An(point) is the is the coefficient of the maximal loading of the most heavily loaded 
ball bearing element. 

Certain examples of the load distribution in the function ε are presented in Fig. 6. Where ε 
means the coefficient of the angle of the load distribution on rolling elements. The values of 
the coefficient An for line and point contact can be estimated from the diagram presented in 
Fig. 7 (Krzeminski-Freda, 1989).  
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Fig. 6 Load distribution on rolling elements in radial bearing 

 

 
Fig. 7 The values of the coefficient An of the maximal loading for line and point contact 

Generally, the angle Ψε lies within the range of 70° ÷ 90°. In such situation, when the 
diameter clearance is zero the An(line) = 4 for roller bearings and An(point) = 5 for ball bearings 
can be assumed (Hamrock, 1983). 

In order to obtain more accurate solution the total elastic deformation δ and diameter 
clearance Pd must be taken into account following one of the given below formulas (Hamrock, 
1983): 
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(ii) for ball bearings 
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RESULTS AND CONCLUSIONS 

The mathematical solutions for line and elliptical contact were applied in the calculations 
of rolling bearings. The algorithm proposed in Fig. 8 was used in the fatigue analysis of 
selected rolling bearings. As input data: radii of curvatures, loading per roller element, contact 
length, material properties (E, t-1, f-1, ν), start point zmin , end point zmax and no. of points of 
calculations were introduced. 

 
Fig. 8 The algorithm for the analytical calculation of RCF of rolling bearing 

The maximal fatigue loads for the bearing made from steel X105CrMo17 were calculated. 
The material properties of this hard steel t-1=427 MPa and f-1 = 712 MPa (Romanowicz, 2012) 
for about 107 ÷ 108 cycles to failure were assumed in the performed fatigue analyses. The 
information about the investigated bearings are given in the table 2. The principal dimension 
(inside – d and outside - D diameter and bearing width – H), the basic load ratings and the 
fatigue load limit Fu are given by the producer (SKF). In the case of roller bearing the 
equivalent fatigue stress in relation to the fatigue limit - t-1/τP1 was calculated for the contact 
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length set to 80% of the roller element length. Such assumption resulted from the shape of the 
cylindrical roller given in Ref. (Hamrock, 1983). The calculation of the safety factor for 
spherical roller thrust bearing was performed for the optimal radius of the roller element 
(Romanowicz, 2012). The more detailed information about numerical FEM analysis and high-
cycle fatigue analysis of this bearing can be found in Ref. (Romanowicz, 2012).  

Furthermore, the maximal fatigue loads in the sense of the multiaxial high-cycle fatigue 
hypothesis P1 were calculated for the selected rolling bearings. 

 

Table 2 Comparison of calculated fatigue stress with information given in catalogues by manufacturer 

Designation 
Principal 

dimensions 

Basic load 

ratings 

Fatigue 

load 

limit 

The 

safety 

factor 

The 

maximal 

fatigue 

load 

Bearing 

 d  
mm 

D 
mm 

H 
mm 

C kN C0 kN Fu kN t-1/τP1 Fu
(P1) kN  

81110 TN 50 70 14 47.5 166 16.6 1.05 18.2 
Cylindrical 

thrust 
roller 

NUP 204 ECP 20 47 14 25.1 22 2.75 1.01 2.76 
Cylindrical 

roller, 

An = 4 

293/1600EF 1600 2280 408 36800 200000 11800 1.04 12900 

Spherical 
roller 
thrust 
bearing 

 

Summarizing, the following concluding remarks can be drawn: 
1) The application of the multiaxial high-cycle criteria allows for the calculation of the 

equivalent fatigue stress including the non-proportional stress state which occurs in 
the rolling bearings, 

2) The application of theoretical models based on the Hertz theory allows for the fast 
estimation of subsurface stress distribution, which is necessary when using the 
multiaxial high-cycle fatigue criteria, 

3) The numerical results applied in the mathematical models and in the P1 hypothesis 
give the similar values of the maximal fatigue load when comparing with the fatigue 
load limits Fu given by manufacturer. 
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