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ABSTRACT 

This study considers dynamic problem for deformation of a piecewise-homogeneous half-

strip, which models experimental process of high-speed deformation of viscoplastic materials. 

Using the developed solution of corresponding elastic problem and the obtained experimental 

data, the input parameters of the problem are selected, which characterize loading rate and 

dissipation of the strain energy. Using these parameters the analysis is held for the influence 

of equipment inertia and external loading rate on the change in viscoplastic properties of the 

alluminium alloy 2024-Т3 plate during the deformation process. 

Keywords: elastic-plastic deformation, strain rate, viscoplastic material. 

 

INTRODUCTION 

Determination of the dynamic properties of materials, especially those related to their strength 

and ability to retain the shape, is a vital problem for modern engineering studies, especially 

those in the aircraft industry and airspace engineering (Meyers, 1994). Numerous 

experimental studies have revealed a number of peculiarities in the dynamic behavior of the 

materials at the yield point, which had not been observed under the quasi-static loading. One 

of the main peculiarities of the dynamic deformation is the influence of the strain rate on 

mechanical properties of the material. It is observed, that under the high-speed or impact 

loading the yield point of most of the structural materials is reached at essentially higher 

levels of the internal stress, comparing to slow loading. 

Numerous studies have shown that the main reason of this behavior is caused by the 

sensitivity of the material to the strain rate. Several experimental studies allowed to plot and 

approximate the dependence of the yield stress on the strain rate for various materials. The 

majority of the materials used in modern structural elements possess mainly the same yield 

stress – strain rate dependence, which is plotted in Fig. 1. 

Presented results feature the presence of three characteristic intervals of the strain rate: rapid 

growth of the yield stress (II) and its quasi-constant behavior (I, III). Moreover, the increase 

in the yield stress for the majority of structural materials is within 80-100%. 
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Fig.1. Dependence of the yield stress on the strain rate 

Therefore, the processes, which feature intensive change in the strain rate due to the 

technological conditions or other external and internal factors, can be accompanied with the 

effects, which are not inherent to the classical understanding of material strength (Chausov 

and Pylypenko, 2005).  

 

RESULTS 

It is known (Achenbach, 1973) that in dynamic problems for finite solids the rate of external 

loading is crucial both for process identification (dynamic, quasi-static) and for determination 

of the intensity of transient stress-strain state and the strain rate. However, the studies of the 

authors (Hutsaylyuk et al., 2012) show that the value of strain rate is constant for the 

considered problem; therefore, the yield stress is constant too. This behavior is explained by 

the fact that this problem does not consider possible dissipation of strain energy, or its 

transformation. One of the ways to identify the dissipation of the elastic-plastic strain energy 

is to account for the inertia of measurement equipment, or in other words, to account for a 

perfect mechanical contact of a plate with a massive elastic medium during the deformation 

process. 

Due to the above-mentioned, this study considers dynamic elastic-plastic problem for a 

rectangular plate, which is perfectly bonded with a half-strip made of other material (Fig. 2). 

 

 

Fig. 2. The sketch of the problem 

The source of transient processes in a plate is the loading of its edge with time-dependent 

traction p( t ) . 

The mathematical formulation of the problem lays in the determination of the solution of the 

initial-boundary value problem for the displacement function ( i )
u ( x, )τ  in the plate 1( i )=  

and in the half-strip 2( i )= , which consists of 
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• the equation of motion 
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• the boundary condition 
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• Sommerfeld radiation condition 
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• and initial conditions 
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The following notation is used in Eqs. (1)-(5): 1 2
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Using the Laplace integral transform (Sneddon, 1951) for a time variable, the following 

solution of the problem (1)-(5) is obtained in the transformed domain 
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Inverse Laplace transform of Eq. (6) is obtained using the partial fraction expansions theorem 

(Sneddon, 1951). In particular, for the component 1( )

xx
( x, )ε τ  of the strain tensor the following 

equation is obtained 
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In instance, for the step-like loading p( ) p S ( )τ τ∗

+=  one can obtain 
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In practice, dynamic impact loading is always continuous in time, and increase faster or 

slower from zero value to the limiting one. Therefore, the high-speed increase in load is 

approximated with the relation 2
1p( t ) p* ( exp( at ))= − − , which can be expressed in terms of 

the dimensionless time τ  as follows 

2

01p( ) p ( exp( ))τ τ τ∗= − −  (9) 

where ( ) 1

0 1

( )
L a / cτ = ⋅ . This relation allows agreeing initial and boundary conditions, and 

also it allows accurate approximation of the real dependence of dynamic load on time in many 

practically important cases. 

For the selected time-dependence of loading the deformations inside the plate are defined by 

the following relations 
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Based on Eq. (10) the component (1) ( , )
xx

xε τ�  of the strain rate tensor is determined, and 

afterwards, the time-dependence of the dynamic viscoplastic yield stress is determined for 

different values of the intensity of strain energy dissipation (relations between the physical 

and mechanical properties of the plate and the half-strip) and the rate of the external loading 

applied. 
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Fig. 3. Time dependence of the yield stress of the plate’s material for various intensities of strain energy 

dissipation 

One can see in Fig. 3 that the account of the permanent energy dissipation due to the 

equipment inertia causes the time-dependent behavior of the yield stress of the plate’s 

material, and therefore, can cause its specific behavior under the limit (close to the fracture 

limit) loading applied. For values 0α → , which correspond to the case of rigidly fixed edge 

of the plate (elastic waves reflect from the edge of the plate without loss of their strain energy) 

the yield stress does not change during deformation process, and therefore, the effect of 

nonclassical behavior of the material close to the yield strength can be not observed. The 

increase in the parameter, which characterize strain energy dissipation, causes the decrease in 

the time interval of the yield strength change, which in instance for 0.15α = −  is only 10 % of 

the period of yield stress change for 0.02α = − . Furthermore, even for small values of the 

parameter α  (intensive strain energy dissipation) there exists a time interval, where the yield 

strength changes slightly, which is in good agreement with the experimental data (Chausov 

and Pylypenko, 2005). 

The same issues arise during the study of the influence of the load rate on the change in the 

yield stress. For example Fig. 4 depicts numerical results obtained for 0.02α = − . One should 

note that for a plate made of the alluminium alloy 2024-Т3 ( 6.9E =  GPa, 0.3ν = ) the value 

of the dimensionless parameter 0 1τ =  for the length of the plate 0.15mL =  corresponds to 

the value 150 msa
−= , or in other words, for 0 1τ =  the external load reaches its stationary 

value in 0.1 ms. Furthermore, the numerical calculations held show that the results obtained 

for 0 10τ =  practically coincide with those obtained for step-like loading. With the decrease in 

the loading rate one can observe the decrease both in time needed for the change in the yield 

stress, and in the value at which it changes. For 0 0.2τ =  the material of the plate practically 

does not show its viscoplastic properties. 
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Fig. 4. Time dependence of the yield stress of the plate’s material for various values of the external loading rate 

 

CONCLUSIONS 

Based on the mathematical model of the viscoplastic phenomenon and the elastic solution of 

the dynamic problem for a piecewise homogeneous half-strip the influence of the strain 

energy dissipation and the loading rate on the changes in yield stress is studied. 

It is shown that the account of the equipment inertia (the phenomena of strain energy 

dissipation) causes the change in the yield stress during the deformation process and can be 

the basis for scientific explanation of the experimentally observed phenomenon of 

nonclassical behavior of materials under the limit high-speed loads. 

It is also shown that the change in the yield stress during the process of dynamic deformation 

is essentially influenced by the speed of external loading (loading rate). 
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