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ABSTRACT

Steel monopiles are the most widely used foundatiethod of offshore wind turbines and
are driven into place with the help of large hydimbhammers. The installation process is
accompanied with very high sound pressures at uh@wnding water which are known to
produce deleterious effects on both mammals atmd firsthis work, a linear semi-analytical
formulation of the coupled vibro-acoustics of a @bate pile-fluid-soil interaction model is
addressed. The pile is described by a thin shelbrth whereas both fluid and soil are
modelled as three-dimensional continua. It is shtvah the near-field response in the fluid is
dominated by pressufdach conesdue to the supersonic compressional waves in ilee p
generated by the impact hammer. The soil resp@ndeminated by shear waves with almost
vertical polarizationScholtewaves are generated at the soil-fluid interfaceckvipropagate
with a velocity slightly lower than that of the stievaves in the soil. Their energy is mainly
localized in a restricted zone close to the int&fand therefore they experience much less
attenuation in comparison to the other surface mmode number of cases for which
experimental data are available for comparisomaysed in order to show the ability of the
model to provide reliable predictions and to highti the strong and weak points of the
model.

Keywords: pile driving, vibro-acoustics, underwater acoustaid-fluid interactionScholte
waves

INTRODUCTION

The semi-analytical description introduced herea ifollow-up work of a previous model
developed by the same authors (A.Tsouvalas and Metikine, 2013), but accounts
additionally for a complete three dimensional dggiom of the soil. The pile is described by
an appropriate thin shell theory which includes #fiects of both shear deformation and
rotational inertia. The fluid is treated as a thdgmensional compressible medium with a
pressure release boundary describing the sea surfde soil is described as a three-
dimensional continuum able to support both dilatadi and shear waves and is terminated at
the pile tip level with a rigid boundary. The indlace of the rigid boundary is expected to be
small for large penetration depths of the pile ithe soil (H.R. Masoumi, G. Degrande,
2008). The solution of the system of coupled pbdiHerential equations is based on the
dynamic sub-structuring technique. The total systedivided into two sub-systems: the shell
structure and the soil-fluid exterior. The linepiaf the model allows for the representation of
the response of each domain in the form of a sgsérpn over appropriate eigenfunctions. It
is shown that the set of eigenfunctions of eachalorform a complete and orthogonal basis
which allows for a suitable representation of thgponse of the coupled system. By enforcing
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force equilibrium and displacement compatibilitytla¢ interface between the shell structure
and the exterior layered medium, the original systé coupled partial differential equations
is reduced to a system of coupled algebraic equatiwhich can be solved with high
accuracy. This paper is structured as follows. ifst,fthe mathematical model is described
and a method is presented for obtaining the saiutiothe coupled system. Subsequently, a
discussion takes place on the completeness of thdalnsum and of the approximations
inherently involved in such a representation. Tareixe the completeness of the modal sum,
a solution based on the wavenumber integrationnigqaok is discussed and the results are
compared with those ones obtained with the apphicaif the separation of variables method.
The equivalence of the two approaches of the prolalealysed here is demonstrated. Finally,
results are presented for a real case scenarigh@nhfluence of the soil properties on the
vibro-acoustics of the system is thoroughly analyse

MODEL AND GOVERNING EQUATIONS

The geometry of the model is shown in Fig. 1. Thellss of finite length and occupies the
domain0< z< L. The constant&, v, R, p and2h correspond to the complex modulus of

elasticity in the frequency domain, the Poissomorahe radius of the middle surface, the
density and the thickness of the shell respectivEie soil occupies the regiary < z< L for

r > R. The interface atz=L is substituted by a rigid boundary and the sodwabit can
consist of a number of layers with varying propestiall of them horizontally stratified. The
soil material shows viscoelastic behaviour and riteerial damping is incorporated in the
form of complex constants instead of the clasdieahéconstants. The constanis and z

define the complexamé coefficients of the soil material ang is the Poisson ratio that is

assumed real valued. The fluid occupies the donzaz<z, for r > R and is modelled

with the linearised and compressible descriptionsrAall attenuation coefficient can be
incorporated in the form of a complex wave speed.

Hydraulic E(t)
hammer

> 6 Br
4 7=71
fluid pﬂe ﬂglg mo?;led as pile modelled as
a > continuum ay a thin shell

' 7=72
@ soil modeled as
soil a 3D continuum

z=L

S~—— 7272277272772/ 777777 7 7 T

Fig.1 Geometry of the model and coordinate systefimition
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Governing equations of the coupled system

The system of equations is analytically derivedeHfer the axially symmetric case in which
the external force is applied at the pile headiwa@iy. The equations of motion describing the
vibro-acoustics of the coupled system read:

L} u@ 0+l e} u(zt)=-0,(R21)-H(z-2,)+p, (Rzt) [H(z-2)-H(z-2,)]+F(zt) (1)

In the equation abovay(z t) is the displacement vector of the mid-surfacehef shell. The
terms {L} and {I, ,} are the stiffness and modified inertia matrix @pers of the shell
respectively based on the applied thin shell thedFiieir components are given in
(A.Tsouvalas and A.V.Metrikine, 2013). The ten’g(R,z,t) represents the boundary traction
vector that takes into account the reaction ofsthiesurrounding the shell &, <z< L. The
term p,(R,zt) represents the fluid pressure exerted at the augace of the shell at

z, < z<1z,. The functionsH(z - z ) are the Heaviside step functions which are usee toe

account for the fact that the soil and the fluig ar contact with different segments of the
shell. For the cylindrically symmetric case dis@dssn this section the angular dependence
drops from all terms in Eq.(1).

The motion of the fluid is fully characterized bysaalar velocity potentialp,(r,zt). The
equation of motion for the outer fluid domain reads

1
Vip: (12t)-— ¢, (r21)=0 )

f
, wherec, is the sound speed in the exterior fluid domaid #eLaplacianoperatorv? is

defined in the cylindrical coordinate system. Thesgure in the fluid and the velocity vector
are given by:

oplr,zt
pf(r’z’t)z_pf,z'(o(T) (3)
Vv, (r,z,t) =Ve, (r,zt), with v being the well-knowiNablaoperator. 4)

The motion of the soil medium is described by tlfving set of linear equations:

2 o°u
u-v u+(ﬂs+ys)-VV-u=ps-¥ )
The constitutive and geometrical relations forsb# medium read:
O =A-&y 05 +2- - (6)
1
& ZE'(ui,j+uj,i) (7)

The Helmholtz decomposition is applied, i.e.=Vg¢,+V xy,, in which two scalar

potentials are introduced for the axial symmetdase; which satisfy two uncoupled equations
of motion:

Vzgos(r,z,t)—c—];(DS(r,Z,t)=0 (8)

L

Vo, (128) —— . (r,2t) =0 9)
c2
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, in whichic_ =/(4+2u,)/p, ¢ =\u/p correspond to the phase velocity of the

compressional and shear waves respectively. Sieceark in the linear regime, the solution
can be searched for in the frequency domain. Ttegial Fourier transform with respect to
time of the aforementioned set of equations yields:

L} 0z 0)+ | Uz.0)=-5,(R2.0) H(z-2,)+F, (Rz.0) [H(z-2)- H(z-2.)]+ ,(z.0) (10)
Vo, (r.z,0)+k* -9, (r,20)=0 (11)
Vo (r,z,0)+k?-p,(r,2,0)=0 (12)
Vi (rz,o)+ k2 -y (r,z,0)=0 (13)

. . o° o° »° : .
, in whichk? =—-, k? =— andk; =—-. Egs. (10) - (13) form the set of equations in the
c; ct c;

Fourier domain. The task is therefore reduced &dérivation of the complex amplitudes
o.(r,z.0), ¢,(r,z.0) and 7 (r,z,®) in the frequency domain. Once these are known the

solution in the time domain can be found by usingraerse Fourier transform.

Boundary and interface conditions

In addition to the governing equations, the coupgstem should satisfy a set of boundary
and interface conditions. The boundary conditidoagthe vertical coordinate read:
e Boundary condition at the fluid surfa¢e=z,):

pi(rz=2,0)=0 (14)
¢ Interface condition at the seabed surfdee- z,):
G,(rnz=2,0)+p,(r,z=2,0)=0 (15)
G,(rnz=2,,0)=0 (16)
Gz(r,z:zz,a))—ii-vzyf(r,z:zz,a)):o (17)
X0
e Boundary condition at the soil bottofm =L ):
0,(r,z=L,w)=0 (18)
i(r,z=Lw)=0 (19)

The boundary conditions along the radial coordimage:
e Radiation condition at infinityr(— ):

lim r-(%Jrkf.L -@.SJ:O andlimr-(al';s +k; -&szo (20)
r—o or ’ ' r—> or

¢ Interface conditions along the shell-fluid and $fsail interface ¢ = R):
U, (2 < 2 zz,a))—i-v,’f (r=Rz<2<27,0)=0 (21)
U (2, <2<L,0)-0,(r=Rz,<z<L,w)=0 (22)
Uyenen(Z: £ 2<L,0)-0,,(r= Rz, <z<L,w)=0 (23)

The set of equations (10)-(23) describes the cauplbro-acoustics of the system in the
frequency domain.
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SOLUTION TO THE COUPLED SYSTEM OF EQUATIONS

The response of the system is sought for in the foira modal expansion with respect to the
in vacuoshell modes and to the modes of the soil-fluid dom@he analytical approach is
based on the following stepg: solution of the eigenvalue problem of the shelihaut the
presence of the fluids and the sai;, solution of the eigenvalue problem of the soiidlu
exterior domain;iii) solution of the coupled system of equations resgltfrom the
substitution of the obtained solutions for the hat the soil-fluid domain into the interface
conditions.

Eigen-vibrations of the shell structure

The procedure for calculating the eigenfrequenaigs eigenmodes of a circular cylindrical
shell with arbitrary edge constraints is standardl a&an be found, for example, in
(A.Tsouvalas and A.V.Metrikine, 2013). The analgtisolution is based on a coupled system
of partial differential equations describing thedrvibrations of the shell, i.e. homogeneous
part of Eg.(1), which includes the effects of bskiear deformation and rotational inertia. The
final solution per vibration mode can be expresadtie following form:

Upn(Z 1) = AU o (2)-exdi @, t), with n=0. (24)

The index j=r,z indicates the corresponding displacement componari0 is the
circumferential order (for the axially symmetricseq andm=12,...,00 is the axial order. The
functions U ,,(z) and U, (z) describe the axial distribution for the axial aratlial
displacement fields respectivel®,, . is the eigenfrequency. The unknown modal faciyfs

are determined at the last step of the solutiorgumore by solving the coupled problem as
will be described in the following sections.

Eigen-vibrations of the layered medium

A solution to the equations of motion of the saidathe fluid domain which satisfies the
boundary conditions at infinity, i.e. Egs. (20)ndae expressed in the following form:

¢ (rzo)= HSZ)(kfr) [Aexr{—af Z)+Azexdaf Z)]
(E (r Z, a)): HP (k. r) [Aexd-a.z)+ A exda.2)] (25)
(rzo)=H?(k.r [Asexr( B.2)+ Aexdb.z)]

,with a, = |k> -2, /kz—— and g, = [k? ——-
Cf

By using the introduced Helmholtz decompositiore tlisplacements and stresses of the soil
domain can be expressed in terms of the potentnaitions. In a similar way the pressure and
velocity field in the fluid can be expressed innerof the fluid velocity potential. Therefore
all physical quantities of the system can be exm@sas functions of the corresponding
potentials. Substitution of those into Egs. (1419) yields the following system of coupled
algebraic equations:
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~iwp, (A+AHPk,r) =0

—iop [Aexda, (z -2,))+ Aexd-a,(z -2,)] HO k1) +
tFAKCA = AJCA, + 2007 A+ 20,02 A+ AG2A] HE (k1) +
+[-2uk2B2A + 2u k2P A HE (k;r)=0

2klz_as:us(A3_A4) HF)(kLr)_lus[k'I?AS—i_k'l?As+ﬂSZA5+ﬂSZ&] H£2)(kTr):0
[afA&eXF(af (21_22))_afAZEXF(_0‘f (Zl_zz))] H(()Z)(kfr) +
+iwa (A — AHP (k.r)++idk (A + A)HP (ker)=0

[- 2 Aexd—a,(L-2,))+aA exda(L-2))] HP(k.r)+
+[_kTAseXF(_:Bs(L_22))+kTAsexF(ﬂs(L_Zz))] HSZ)(kTr)ZO
[_ kLAs,eXF(_as(L_Zz))_kLAAeXF(as(L_Zz))] Hf)(kLr)'*'
+[B.Aexd-B.(L-2,))- BAexdB(L-2))] H? (kr)=0

(26)

The aforementioned system can be satisfied aamaglesr if and only if:

ke =kr =k; =k (27)
Substitution of this expression into the equatiaibgve yields:

Da=0 (28)
For a non-trivial solutiordet(D) should be set equal to zero, which results int afsdiscrete
real and imaginary wavenumbeks, p= 123...,0 for each excitation frequency. Each

wavenumber corresponds to a mode (the so-calleshteigction) so that the final response
can be represented as a modal sum over all eigezsnod

7, (12.0) =Y CHO[,1) 5,,(2)

p=1

7(rz0)=Y.CH@r) 7.,(2) (29)

p=1

&s(riziw)ZZCpr)(kpr) '/73,;)(2)

p=1
All other physical quantities can be expresseceims of the aforementioned potentials, i.e.
for the displacement vector of the soil we canevdown:

0,.(rnzo)=YCHkr) T..,(2)
p=1

- (30)
UZS( rz, a)) = ZCpHéZ) (kpr) Uzap(z)

u(r,zm)= etc.

Orthogonality relations and correlation of the modal coefficients

An appropriate integral representation of the fais¥ conditions (21) - (23) correlates the
unknown modal coefficients of the shell structug, with those of the soil-fluid domai, .

The linear combination can be found by using théagonality relation of the fluid-soll
modes. The orthogonal domain of the shell structoreacuois the domain0<z<L.
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Accordingly, the orthogonal domain of the combinidid-soil modes is the domain
z, <z< L. In mathematical terms the orthogonality propéstythe shell modes implies that:

L
[ UgnUigdz=No, 5 (31)
0

om*~ mk

, whereu,,, andu,, refer to two different shell modes. The noNy,, becomes:
L
Nop = [U % +U 5,02 (32)

0
Based on integral representation theorems of elgstonics and a derivation similar to that
followed byHerrera (Herrera, 1964), it can be shown that for the asa layered medium

occupying the domaiz, < z< L, the following orthogonality condition holds:

o(2)U,(z u, ,(z) - . o,z
_[|:§sfk§ p( ) I:( )+775;f kp( )O-zzq(z)—i_uz,q(z)%} dZ:Fpé'pq (33)
P q P p
, inwhich ' ; andz,; are given by:
4 (2 52 2 5.2
(= Ps|CL (z; ZCT) | £ =0, n,= G CZZCT and n, = 1 Note also that for the fluid
L L
zone&,,,(z)=-p; 4(2). The soil-fluid modes can be normalized such that:
< u (z) - _ G, (2
r=] {ésfks 07o(2) + 175 ;’( )azzp(z)wz,p(z)%} dz=1 (34)
Z p P

We first expand the interface conditionsrat R, i.e. (21) — (23) in the modal-wavenumber
domain, i.e. in terms of Egs.(30). By pre-multiplyi both sides of each equation with
appropriate stress or displacement functions atet aarrying out an integration over the
soil-fluid domain we obtain the following system afgebraic equations correlating the
unknown shell and soil-fluid coefficients:

3 Ay Qup = C k,HA (R, +£chqp , (35)
with:

k

Z p

=1 CakUnlz )u,p<z>+nsfur0m<z>&m<z>+um<z>5L(Z)} iz

Ly = kRj[uzp & o(2)] dz—HP (K, R)J'{ ()5“(2)} dz

2 2

Solution to the coupled problem

A substitution of the modal representation of the sub-systems into Eq. (10) yields:

SULY A0 (2)+ (T | onUon(2)=
-0 (36)

=—H(z—a)-i:lcpas,,mz)wu[H(z—zi)—H(z—z2>1-2cpaf,p<az>+ﬂn<z>-a<z>

By applying the orthogonality property of the shaibdes, the following set of coupled
algebraic expressions can be obtained:
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o L

——ZC IUOm IUOm Pi,p(RZ)|dz+ I (37)
2 7 0

Egs. (35) and (37) form a coupled system of algebeguations which need to be solved

simultaneously for botly, andC, for an externally applied force at the pile head.

WAVENUMBER INTEGRATIONSMETHODS VERSUS MODAL ANALYSIS

In this section the same problem is solved with tise of the Hankel transform method
(HTM) with respect to the radial coordinate of gystem. This allows us to prove the validity
of Eq.(27) and to discuss some of the main sintiéariand differences between the separation
of variables method (SVM) and the HTM. The unifigdatment discussed here shows that
the modal method is nothing more but a special ohsee more powerful integral transform
technique. Therefore one should always be awartefsimplifications introduced by the
SVM and of the fact that the completeness of thdahsum is no& priori guaranteed.

Solution based on the Hankd transform method

Eq. (28) can actually be obtained by searchinglfiothe potentials in the form of the inverse
Hankel transform defined at the intervat R :

Jr: Fr () 3,(ér)de (38)

Using the above representation, Egs.(11)-(13) eamamsformed to:

2 Hg 2
T2 ipriczo)-o,witn af =222 =

f

2 ~Hy ’
w_aw@,z’@:o,wnh S (40)

Z CL

2 ~H; :
SN2 gy zo)-0,wih i =g -2 @

The solutions to the above equations are given by:

or°(&,z0)= Aexd—af Z)+ A exdaf Z)

9" (§,z.0)= Avexit-o.2)+ A exa2)

i (6, z.0)= Aexid- B2)+ Aexid f2) (42)

The pressures, stresses and displacements of thmdédia are given by:

b(r,z,a))=—ia)pf J.SE (/A’fHO(éE’Z’w) ‘]o(fr)df

o) [ STE20) 5”’) J(ér)e

3,.(r2.0)= jg[“’gf“’) UCETIRIEE 3)
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0,.(r2.0)= & + 7 (6 2,0)| e

0

o (§,z.0)
dz

& o(r2,0 =I§[ (6 z.0)+ (1 20) P02 Lzué"‘”’éi"“’)} 3,(er)de

© ~Hg 2 ~H,
&uslt20)= - & {25"(”5 g’:’z"’))+d = dg’z"”)+r:2 M zw)} 3,(¢r)dg
A substitution of these solutions into the boundamng interface conditions, i.e. Eqs. (14)-
(19), yields the system of equations (28) with tbkowing equivalenceé =k, . Since the
boundary conditions have to be satisfied forratlR, it is clear that they must be satisfied by
the kernels in the integral representations resylfrom substitution of Egs.(43) into the
boundary conditions. This statement is equivalerthe one introduced earlier by Eq.(27). In
other words, by setting the separation constanialéq each other we actually make sure that
the modes will satisfy the boundary conditions\edrg r . The analogy between the SVM and
the HTM in this particular problem actually proube validity of Eq.(27).

Case of a bounded domain in depth

The derivation presented in the previous secti@arty demonstrates the close relationship
between the wavenumber integration methods and Ineddysis methods. However, the
modal representation is exact only when the modiad & complete, which actually implies
that additional wavenumbers, other than those éatchy solving the soil-fluid eigenproblem,
do not contribute to the field. To illustrate thige first note that the Bessel functions of the

first kind introduced in Egs. (43) can be repladgd%H(nz)(.ffr) with the simultaneous

extension of the lower integration limit tH— —oo . The resulting integrals can be evaluated

using the contour integration approach and thedvestheorem. It is important to note here
that the kernels of the inverse Hankel transformessingle-valued functions af despite of

2 2
the existence of the square roats, = |£° _a)T and B, = |&? _a)_z in the integrands.
o CriL Cr

This can be easily verified by checking the invace of the integrands with respect to the
substitution &£ =-¢. Given the single-valuedness of the integrandgh@&evaluation of the
integrals by means of the contour integration metlomly the poles need to be accounted for.
One can locate the poles in the complex plane implyi solving Eq.(28). Positions of the
poles are shown indicatively in Fig. 2. The physimoaaning of the real and imaginary poles
which represent the radial wavenumbers will be givethe next section. By using Cauchy's
theorem the original integration path can be deéatralong the real axis to the one depicted
by the bolt (blue) line as shown in Fig. 2 into ttemplex plane in order to avoid the poles.
The radiation condition at infinity determines wiwet the contour should pass below or above
the poles on the real axis. The contour integratachnique yields the following relation:

T + _[ :ZRiireikp) (44)
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fluid layer
«4—0—0-0-0-0-0—f Re(¢)
soil layer /
y NN NN S Scholte pole
PR AN\ A
[N Y
[JEN poles corresponding to
7 IS .
Z PARSS propagating modes
%. , < N
I‘Igld bottom surface e =<8, poles corresponding to

evanescent modes

v
Fig.2 Complex contour integration path for the case bounded medium

In Eq.(44) the functions to be integrated are thdeBned by Egs.(43). We note that the
semicircle C__, goes to infinity and subsequently the second nalem (44) goes to zero

because the Hankel function decays as the raditiseademicircle increases. Eq.(44) can be
rewritten as:

+00

j = Znii res(kp) (45)

—00

, which actually implies that the original integost over the whole range of wavenumbers is
equal to the sum of the residues enclosed by tlsechintegration path. The residues
themselves correspond to the modes of the probidraral. In other words, the representation
of the response of the bounded fluid-soil domaitheaform of a modal sum is exact.

Case of an unbounded domain in depth

Now let us assume that the soil is not terminated -aL and that the rigid boundary is
replaced by a half-space extendingze» +o (Fig. 3). In this case the integrands are no
longer single-valued. Therefore, the appropriatenbn cuts should be introduced in the
complex & —plane as shown in Fig. 3.

Im(?)

. A
fluid layer
soil layer 4branch cuts
/|
<
w/C18 m/(én; P
4—0—0—0—0 e —6 P Re(s
-w/CTb -w/CLb '\s:\ N = Re(' )
NN > Scholte pole
N
half-space bottom: Ctb, CLb
A\ poles corresponding to
propagating modes
branch lines
v

Fig.3 Complex contour integration path for the calsan unbounded medium
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Accounting for the integration along the branchsctite Cauchy's theorem vyields:

[+ + [ =2nid redk,) (46)

-0 C-  branch p=1

A comparison of (44) and (46) shows that an add#iontegral is present over the branch
cuts in the case of the half space. In contrasthéo bounded domain, this integral will
contribute to the resulting deformation field:

+00

'[ :2ni2res(kp)— '[ (47)

—o0 branch

The additional contribution of the branch line gras clearly makes the modal sum
incomplete. A physical interpretation of this resalas follows. The branch cuts contributing
to the above equation in terms of leaky waves epoerd to O<¢é<w/cy,. By

understanding the fact that the Hankel represemtasi actually a decomposition of the field
in terms of conical waves, the small wavenumbérS‘a)/cLuTb‘, will correspond to steep

angles of incidence of the conical fronts on th# Bpace surfaceZ=L). For those steep
angles of incidence radiation of energy in the fosmbody waves in the half space is
unavoidable. This continuous radiation is not cegutuby the normal modes which actually
represent only that part of the spectrum corresipgnit the energy trapped in the waveguide.
The simplification originally introduced by the wigbottom hypothesis az =L becomes
now apparent. In this latter case, even wave frontfs steep angles of incidence do not lose
any energy when reflecting from the bottom of tlgstem and the energy isckedin the
waveguide which, in turn, makes Eq.(45) valid. histwork we would like to interpret this
result from a different point of view. By checkimgnether the generated wave fronts from the
pile vibrations in the soil zone are formed witingkaa or small angles to the vertical we can
directly conclude as to whether the modal summaisoa good representation of reality or
not. As will be shown later, for large penetrataepths of the pile into the soil, the main part
of the energy will indeed be trapped in the wavdgwhich makes our representation of the
response in the form of Eq.(45) valid for almositakes of practical interest.

NUMERICAL RESULTS

In this section the response of the coupled sysseexamined for a specific set of material
and geometrical parameters similar to those intedun (A.Tsouvalas and A.V.Metrikine,
2013).

Parameter Value Units | Parameter Value Units
E 2,10E+11 N/rh Vs 0,40

v 0,28 - ps 1600 Kg/m

P 7850 Kg/m Es 1,00E+08 N/rf

Nshell 0,001 G 3,57E+07 N/rh

R 0,46 m As 1,43E+08 N/rh

2h 0,02 m c 366 m/s

L 32,4 m G 149 m/s

z1 6,50 m Pr 1000 Kg/m

z2 13,4 m I 1500 m/s

Table 1. Material constants, geometrical parametedssoil properties (reference values) for theremad case

IRF'2013
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The geometrical configuration and material progsréire those given in table 1 unless stated
otherwise. At first, the dispersion relation of teeterior (to the pile) domain is examined
since this is essential in order to understandaralyse the various types of waves that can
propagate in the media. Secondly, the forced respohthe system is examined in both time
and frequency domains. Finally, the soil parametaes modified in order to check the
sensitivity of the response for different soil pedjes. Special attention is paid to the
examination of the influence of the Scholte waveshe pressure levels in fluid.

Dispersion relation and waveforms

The obtained dispersion relatiow ¢ k, diagram) for the propagating modes of the exterior

soil-fluid domain is shown in Fig.4. The term prgpting modes is used here to reflect modes
with purely real wavenumbers in the case of a pdyfelastic solid or complex wavenumbers
with a real part being much larger than the imagirane for those cases in which material
dissipation is included. Each point on the gragdresents a solution of the dispersion relation
of the exterior domain. The three phase veloctieseasily distinguishable and are marked
with thick bold lines for comparison. In the dispien plot, the distinguished root resulting in
the lowest phase velocity corresponds to the Sehethve travelling along the seabed
interface. This root is present for any soil-fliednfiguration. On the contrary, the leaky-
Rayleigh wave becomes forbidden for most casesradtipal interest because the phase
velocity of the shear waves in the soil medium iscmsmaller than that of the bulk waves in
the fluid. The Scholte wave corresponds to a pureff wavenumber in a perfectly elastic
solid. Its amplitude decays exponentially as onges@way from the interface in both media
and as such it is a true interface wave. A detadedcription of the aforementioned
waveforms can be found elsewhere (Glorieux e2a@b]1).
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Fig.4 Dispersion relation for frequencies up to l8@@propagating modes only)
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For ced response of the system

In this section, results are presented for the aaisea system with the geometrical

configuration and the material properties as givetable 1. The load is applied at the pile
head with no inclination to the vertical. The ert@drload corresponds to a hammer input
energy of 90 kJ. The maximum force amplitude eq@al$VIN and the duration of the main

pulse is equal to 5 ms.
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Fig.5 Pressure amplitude spectra of the fluid isRar (a) r=1 m and (b) r=15 m from the surface of
the pile and for a depth equal to 5.5 m from tteeseface

In Fig.5 pressure amplitude spectra are shown var tadial distances and for a point
positioned close to the seabed surface. The peessuplitudes are plotted versus the ones
obtained using a similar model developed in (A. Vstas, A.V.Metrikine, 2013), in which
the soil is described by distributed spring anchgass. As can be seen, the results are similar
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for frequencies higher than 500 Hz. For lower fieggies, the difference in the pressure
amplitudes between the two models is large. Thepstat-off frequency present in the case
of (A.Tsouvalas, A.V.Metrikine, 2013) disappearsenha three-dimensional description of
the soil is included. The soil seems to play a megte in the lower frequency regime where
the coupling between the solil vibrations and tha&lfzone is strong.
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Fig.6 Pressure amplitude spectra of the fluid irsRar (a) r=1 m and (b) r=15 m from the surface of
the pile and for a depth equal to 2 m from thesseface

In Fig.6 results are presented for a point posttbrm from the sea surface. Here the
differences in the lower frequencies are smallerabse of the fact that the sea surface is
assumed to be free in both models. In Fig.7, degpient amplitude spectra of the soil are
shown for a point positioned on the seabed andiforradial distances. It can be noticed that
the soil contributes significantly to the fieldfe#quencies lower than 400 Hz.
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Fig.7 Displacement amplitude spectra for the soihis for r=1 m and r=15 m from the surface of the

Fig.8 Pressures in the fluid (top) and verticaptiisements in the soil (bottom) for different time
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In Fig.8 the generated wave field is shown. Therdfiedd response in the fluid zone is
dominated by pressure Mach cones due to the supersompressional waves in the pile
generated by the impact hammer. These waves amefowith an angle of approximately

sin*(c, /cp):sin‘1(1500/5000):170 to the vertical. The soil response is dominated by

shear waves with almost vertical polarization.His fparticular example the inclination of the
shear fronts to the vertical is less thzth Scholte waves are generated at the seabed irgerfa
and propagate with a velocity slightly lower thaattof the shear waves in the soil as can be
seen from the slight bending of the shear froniselto the seabed interface. In this example
the estimated Scholte wave speed is approximatelgl¢o 089c, = 133ms™.

Finally, in Fig.9 the generated velocity pulse @gating downward the pile is shown. The
horizontal axis shows the vertical velocity in Tand the vertical axis shows the distance
from the pile head. As can be seen the wavefrompaates with a velocity slightly higher
than 5000 mis. It is worth to mention that the region in frorfttbe first wavefront remains
quiescent until the first wave reaches it. The ghess of the front for the frequencies
involved is guaranteed by the high order thin stiedbry applied in this case which includes
high order effects like shear deformation and rotet inertia.
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Fig.9 Velocity evolution with time for the shelfstture

Influence of the soil elasticity

In this section, the soil stiffneds; is varied in order to examine its influence on tbgponse

of the coupled system. Three cases are examinezhvahe summarised in table 2. The rest of
the material properties are kept constant andigesngn table 1.
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Parameter | Value | Units | Parameter | Value | Units] Parameter | Value | Units
E1 1,00E+8| N/ Q1 366 | mis 61 149 | m/s
E2 5,00E+8| N/M o 818 | mis & 334 | mis
Es 5,00E+7| N/rh Cs 258 m/s s 105 | m/s

Table 2 Phase velocities for different elasticitychali

In Fig.10, the pressure amplitude spectra are shfmwrthe three cases and for a point
positioned at a depth equal to 5.5m and at a ra@snce equal to 5m from the pile surface.
The point is again chosen close to the seabed wher@afluence of the soil is expected to be
larger. As can be seen, the differences are sogmfionly at the lower frequency regime, i.e.
for f <400 Hz. Regarding the response in the time domairidlh@ving conclusions can be

drawn. Firstly, the pressures in the fluid zoneiaoeeased close to the seabed in the case of
the stiff soil. Secondly, the stiffer the soil temaller the penetration depth of the Scholte
waves into the soil. For stiffer soils, the eneigynainly localized in the fluid. Similar results
have been obtained in other studies regarding ¢hetpation depth of the Scholte waves into
solids (Glorieux et al., 2001). The increase of phessures for stiffer substrates has also a
clear physical explanation: stiffer soils provigeder resistance to the compressional waves
travelling downwards the pile and therefore mosthefenergy is reflected upward as soon as
from the soil-fluid interface resulting thus in hgr pressure levels in the fluid. This
phenomenon is less dominant for soft soils in whaclarger portion of the input hammer
energy is absorbed by the soil in the form of weagiation. Finally, the shear cones show a
larger inclination to the vertical for stiffer soediments. For the case in which

E, = 500Mpa, the angle of the shear cones is slightly teas sin™(c; /cp)z 4°. The shear

front bends towards the seabed interface (becotmesstavertical). This strong curvature of
the front is mainly attributed to the Scholte warel is completely absent when the Scholte
root is excluded from the modal summation.
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Fig.10 Pressure amplitude spectra of the fluidarsRor r=5 m and a depth equal to 5.5 m from the
sea surface for different sediment types
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CONCLUSIONS AND DISCUSSION

In this paper a novel approach is presented forsthdy of the coupled vibro-acoustics of
piles in layered media. Although the focus was tyaim the generated pressure field in the
fluid column, it is clear that exactly the same mlocan be used for prediction of vibration
levels in the soil region for pile driving actives either offshore on onshore. The pile is
described by an appropriate thin shell theory whictludes the effects of both shear
deformation and rotational inertia. The fluid is detied as a three-dimensional compressible
medium with a pressure release boundary descrthimgea surface. The solil is described as a
three-dimensional continuum able to support botlatational and shear waves and is
terminated at the pile tip level with a rigid boamng The influence of the rigid boundary is
discussed on the basis of complex contour integratover the horizontal wavenumbers. A
comparison of the modal analysis approach withviheenumber integration method shows
that the former is actually a special case of #tet and as such it can be accurate only when
certain conditions are met. Thus, the completerdsthe modal sum should always be
checked since it is nat priori guaranteed. In the case of pile driving it is shdhat for most
cases of practical interest the model can prowtiable predictions of the sound levels in the
fluid and of the vibrations levels in the soil. Thecuracy increases the larger the penetration
depth of the pile into the soil and the softersb@ sediment.

A reference case for which experimental data aaflable for comparison is analysed in both
time and frequency domains. At first, a physicdeipretation of the dispersion relation is
given. In the dispersion plot, the distinguishedtror the lowest phase velocity corresponds
to the Scholte wave travelling along the seabeerfiate. This root is present for any soil-
fluid configuration.

The near-field response in the fluid is dominated gressure Mach cones due to the
supersonic compressional waves in the pile gerelatahe impact hammer. The results are
also compared with those of a similar model in \whibe soil is described by distributed
springs and dashpots and are shown to agree wigllfon medium-high frequencies. For
lower frequencies the spring-dashpot model canaptuce the soil-fluid coupling effects
correctly. The soil response is dominated by sheares with almost vertical polarization.
Scholte waves are generated at the seabed inteiifaese waves propagate with a velocity
slightly lower than that of the shear waves in sod. It is shown that the Scholte wave
influences the results at the lower frequency regand in a confined region close to the
seabed. The influence of soil elasticity on thepoese of the system is analysed. As expected,
the shear cones in the soil show a larger inclmato the vertical for stiffer soil sediments.
The results also indicate that the pressures ifldickare increased close to the seabed in the
case of a stiffer soil.
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