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ABSTRACT 

Steel monopiles are the most widely used foundation method of offshore wind turbines and 
are driven into place with the help of large hydraulic hammers. The installation process is 
accompanied with very high sound pressures at the surrounding water which are known to 
produce deleterious effects on both mammals and fish. In this work, a linear semi-analytical 
formulation of the coupled vibro-acoustics of a complete pile-fluid-soil interaction model is 
addressed. The pile is described by a thin shell theory whereas both fluid and soil are 
modelled as three-dimensional continua. It is shown that the near-field response in the fluid is 
dominated by pressure Mach cones due to the supersonic compressional waves in the pile 
generated by the impact hammer. The soil response is dominated by shear waves with almost 
vertical polarization. Scholte waves are generated at the soil-fluid interface which propagate 
with a velocity slightly lower than that of the shear waves in the soil. Their energy is mainly 
localized in a restricted zone close to the interface and therefore they experience much less 
attenuation in comparison to the other surface modes. A number of cases for which 
experimental data are available for comparison is analysed in order to show the ability of the 
model to provide reliable predictions and to highlight the strong and weak points of the 
model.   

Keywords: pile driving, vibro-acoustics, underwater acoustics, solid-fluid interaction, Scholte 
waves 

 

INTRODUCTION 

The semi-analytical description introduced here is a follow-up work of a previous model 
developed by the same authors (A.Tsouvalas and A.V.Metrikine, 2013), but accounts 
additionally for a complete three dimensional description of the soil. The pile is described by 
an appropriate thin shell theory which includes the effects of both shear deformation and 
rotational inertia. The fluid is treated as a three-dimensional compressible medium with a 
pressure release boundary describing the sea surface. The soil is described as a three-
dimensional continuum able to support both dilatational and shear waves and is terminated at 
the pile tip level with a rigid boundary. The influence of the rigid boundary is expected to be 
small for large penetration depths of the pile into the soil (H.R. Masoumi, G. Degrande, 
2008). The solution of the system of coupled partial differential equations is based on the 
dynamic sub-structuring technique. The total system is divided into two sub-systems: the shell 
structure and the soil-fluid exterior. The linearity of the model allows for the representation of 
the response of each domain in the form of a superposition over appropriate eigenfunctions. It 
is shown that the set of eigenfunctions of each domain form a complete and orthogonal basis 
which allows for a suitable representation of the response of the coupled system. By enforcing 
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force equilibrium and displacement compatibility at the interface between the shell structure 
and the exterior layered medium, the original system of coupled partial differential equations 
is reduced to a system of coupled algebraic equations which can be solved with high 
accuracy. This paper is structured as follows. At first, the mathematical model is described 
and a method is presented for obtaining the solution of the coupled system. Subsequently, a 
discussion takes place on the completeness of the modal sum and of the approximations 
inherently involved in such a representation. To examine the completeness of the modal sum, 
a solution based on the wavenumber integration technique is discussed and the results are 
compared with those ones obtained with the application of the separation of variables method. 
The equivalence of the two approaches of the problem analysed here is demonstrated. Finally, 
results are presented for a real case scenario and the influence of the soil properties on the 
vibro-acoustics of the system is thoroughly analysed. 

 

MODEL AND GOVERNING EQUATIONS 

The geometry of the model is shown in Fig. 1. The shell is of finite length and occupies the 
domain Lz ≤≤0 . The constants E , v , R , ρ  and h2  correspond to the complex modulus of 
elasticity in the frequency domain, the Poisson ratio, the radius of the middle surface, the 
density and the thickness of the shell respectively. The soil occupies the region Lzz ≤≤2 for 

Rr > . The interface at Lz=  is substituted by a rigid boundary and the soil above it can 
consist of a number of layers with varying properties, all of them horizontally stratified. The 
soil material shows viscoelastic behaviour and the material damping is incorporated in the 
form of complex constants instead of the classical Lamè constants. The constants sλ  and sµ  

define the complex Lamè coefficients of the soil material and sv  is the Poisson ratio that is 

assumed real valued. The fluid occupies the domain 21 zzz ≤≤  for Rr >  and is modelled 
with the linearised and compressible description. A small attenuation coefficient can be 
incorporated in the form of a complex wave speed. 
 

 
Fig.1 Geometry of the model and coordinate system definition 
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Governing equations of the coupled system 

The system of equations is analytically derived here for the axially symmetric case in which 
the external force is applied at the pile head vertically. The equations of motion describing the 
vibro-acoustics of the coupled system read: 
 
{ } ( ) { } ( ) ( ) ( ) ( ) ( ) ( )[ ] ( )tzzzHzzHtzRzzHtzRtztz extfs ,,,,,,, 212 FpσuIuL mod +−−−⋅+−⋅−=+      (1) 

 
In the equation above, ( )tz,u  is the displacement vector of the mid-surface of the shell. The 

terms { }L  and { }modI  are the stiffness and modified inertia matrix operators of the shell 

respectively based on the applied thin shell theory. Their components are given in 
(A.Tsouvalas and A.V.Metrikine, 2013). The term ( )tzRs ,,σ  represents the boundary traction 

vector that takes into account the reaction of the soil surrounding the shell at Lzz ≤≤2 . The 

term ( )tzRf ,,p  represents the fluid pressure exerted at the outer surface of the shell at 

21 zzz ≤≤ . The functions ( )izzH −  are the Heaviside step functions which are used here to 

account for the fact that the soil and the fluid are in contact with different segments of the 
shell. For the cylindrically symmetric case discussed in this section the angular dependence 
drops from all terms in Eq.(1). 
 
The motion of the fluid is fully characterized by a scalar velocity potential ( )tzre ,,ϕ . The 

equation of motion for the outer fluid domain reads: 

( ) ( ) 0,,
1

,,
2

2 =−∇ tzr
c

tzr f
f

f ϕϕ                 (2) 

, where fc  is the sound speed in the exterior fluid domain and the Laplacian operator 2∇  is 

defined in the cylindrical coordinate system. The pressure in the fluid and the velocity vector 
are given by: 

( ) ( )
t

tzr
tzrp ff ∂

∂
⋅−=

,,
,, 2,

ϕ
ρ                   (3) 

),,(),,( tzrtzr ff ϕ∇∇∇∇====v , with ∇∇∇∇  being the well-known Nabla operator.       (4) 

 
The motion of the soil medium is described by the following set of linear equations: 

2

2
2 )(

tsss ∂∂∂∂
∂∂∂∂

⋅⋅⋅⋅====⋅⋅⋅⋅∇∇∇∇∇∇∇∇⋅⋅⋅⋅++++++++∇∇∇∇⋅⋅⋅⋅
u

uu ρµλµ                (5) 

The constitutive and geometrical relations for the soil medium read: 
2ij kk ij ijσ λ ε δ µ ε= ⋅ ⋅ + ⋅ ⋅                (6) 

( )ijjiij uu ,,2

1
+⋅=ε                  (7) 

The Helmholtz decomposition is applied, i.e. ss ψϕ ××××∇∇∇∇++++∇∇∇∇====u , in which two scalar 

potentials are introduced for the axial symmetric case, which satisfy two uncoupled equations 
of motion: 

0),,(
1

),,(
2

2 ====−−−−∇∇∇∇ tzr
c

tzr s
L

s ϕϕ                  (8) 

0),,(
1

),,(
2

2 ====−−−−∇∇∇∇ tzr
c

tzr s
T

s ψψ                 (9) 
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, in which: ( )2L s sc λ µ ρ= + , T sc µ ρ=  correspond to the phase velocity of the 

compressional and shear waves respectively. Since we work in the linear regime, the solution 
can be searched for in the frequency domain. The integral Fourier transform with respect to 
time of the aforementioned set of equations yields: 
 
{ } ( ) { } ( ) ( ) ( ) ( ) ( ) ( )[ ] ( )ωωωωω ,

~
,,~,,~,~~

,~
212 zzzHzzHzRzzHzRzz extfs fpσuIuL mod +−−−⋅+−⋅−=+   (10) 

( ) ( ) 0,,~,,~ 22 =⋅+∇ ωϕωϕ zrkzr fff                (11) 
( ) ( ) 0,,~,,~ 22 =⋅+∇ ωϕωϕ zrkzr sLs                (12) 
( ) ( ) 0,,~,,~ 22 =⋅+∇ ωψωψ zrkzr sTs               (13) 

, in which 
2

2
2

f
f c

k
ω

= , 
2

2
2

L
L c

k
ω

=  and 
2

2
2

T
T c

k
ω

= . Eqs. (10) - (13) form the set of equations in the 

Fourier domain. The task is therefore reduced to the derivation of the complex amplitudes 
( )ωϕ ,,~ zrs , ( )ωϕ ,,~ zrf  and ( )ωψ ,,~ zrs  in the frequency domain. Once these are known the 

solution in the time domain can be found by using an inverse Fourier transform.  
 
Boundary and interface conditions 

In addition to the governing equations, the coupled system should satisfy a set of boundary 
and interface conditions. The boundary conditions along the vertical coordinate read: 

• Boundary condition at the fluid surface ( 1zz= ):  
( ) 0,,~

1 == ωzzrp f                             (14) 

• Interface condition at the seabed surface ( 2zz = ):  
( ) ( ) 0,,~,,~

22 ==+= ωωσ zzrpzzr fzz                            (15) 

( ) 0,,~
2 == ωσ zzrzr                              (16) 

( ) ( ) 0,,~
i

1
,,~

2,2 ==⋅
⋅

−= ω
ω

ω zzrvzzru fzz                          (17) 

• Boundary condition at the soil bottom ( Lz = ):  
( ) 0,,~ == ωLzruz                              (18) 
( ) 0,,~ == ωLzrur                              (19) 

 
The boundary conditions along the radial coordinate read: 

• Radiation condition at infinity ( ∞→r ):  

0~
~

lim ;;
; =








⋅+

∂

∂
⋅

∞→
sfLf

sf

r
k

r
r ϕ

ϕ
 and 0~

~
lim =







 ⋅+
∂

∂
⋅

∞→
sT

s

r
k

r
r ψ

ψ                        (20) 

• Interface conditions along the shell-fluid and shell-soil interface ( Rr = ): 

( ) ( ) 0,,~
i

1
,~

21,21, =≤≤=⋅
⋅

−≤≤ ω
ω

ω zzzRrvzzzu frshellr                          (21) 

( ) ( ) 0,,~,~
2,2, =≤≤=−≤≤ ωω LzzRruLzzu srshellr                           (22) 

( ) ( ) 0,,~,~
2,2, =≤≤=−≤≤ ωω LzzRruLzzu szshellz                           (23) 

 
The set of equations (10)-(23) describes the coupled vibro-acoustics of the system in the 
frequency domain. 
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SOLUTION TO THE COUPLED SYSTEM OF EQUATIONS 

The response of the system is sought for in the form of a modal expansion with respect to the 
in vacuo shell modes and to the modes of the soil-fluid domain. The analytical approach is 
based on the following steps: i) solution of the eigenvalue problem of the shell without the 
presence of the fluids and the soil; ii) solution of the eigenvalue problem of the soil-fluid 
exterior domain; iii) solution of the coupled system of equations resulting from the 
substitution of the obtained solutions for the shell and the soil-fluid domain into the interface 
conditions. 
 
Eigen-vibrations of the shell structure 

The procedure for calculating the eigenfrequencies and eigenmodes of a circular cylindrical 
shell with arbitrary edge constraints is standard and can be found, for example, in 
(A.Tsouvalas and A.V.Metrikine, 2013). The analytical solution is based on a coupled system 
of partial differential equations describing the free vibrations of the shell, i.e. homogeneous 
part of Eq.(1), which includes the effects of both shear deformation and rotational inertia. The 
final solution per vibration mode can be expressed in the following form: 

 
(((( )))) (((( )))) (((( ))))tiexp, nmjnmnmjnm zUAtzu Ω⋅⋅⋅⋅⋅⋅⋅⋅==== , with 0=n .          (24) 

 
The index zrj ,=  indicates the corresponding displacement component, 0=n  is the 
circumferential order (for the axially symmetric case) and ∞= ,...,2,1m  is the axial order. The 
functions ( )zU mz0  and ( )zU mr0  describe the axial distribution for the axial and radial 

displacement fields respectively; m0Ω  is the eigenfrequency. The unknown modal factors 0mA  

are determined at the last step of the solution procedure by solving the coupled problem as 
will be described in the following sections.  
 
Eigen-vibrations of the layered medium 

A solution to the equations of motion of the soil and the fluid domain which satisfies the 
boundary conditions at infinity, i.e. Eqs. (20), can be expressed in the following form: 
 

( ) ( ) ( ) ( )[ ]zAzArkzr ffff ααωϕ expexpH,,~
21

)2(
0 +−=  

( ) ( ) ( ) ( )[ ]zAzArkzr ssLs ααωϕ expexpH,,~
43

)2(
0 +−=            (25) 

( ) ( ) ( ) ( )[ ]zAzArkzr ssTs ββωψ expexpH,,~
65

)2(
1 +−=  

, with 
2

2
2

f
ff c

ka
ω

−= , 
2

2
2

L
Ls c

ka
ω

−=  and 
2

2
2

T
Ts c

k
ω

β −= .  

 
By using the introduced Helmholtz decomposition, the displacements and stresses of the soil 
domain can be expressed in terms of the potential functions. In a similar way the pressure and 
velocity field in the fluid can be expressed in terms of the fluid velocity potential. Therefore 
all physical quantities of the system can be expressed as functions of the corresponding 
potentials. Substitution of those into Eqs. (14) – (19) yields the following system of coupled 
algebraic equations: 
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( ) ( ) 0Hi )2(
021 =+− rkAA ffωρ  

( )( ) ( )( )[ ] ( )
[ ] ( )
[ ] ( ) 0H22

H22

Hexpexpi

)2(
06

22
5

22

)2(
04

2
4

2
3

2
4

2
3

2

)2(
0212211

=+−+

++++−−+

+−−+−−

rkAkAk

rkAAAAkAk

rkzzAzzA

TsTssTs

LssssssLsLs

ffff

βµβµ

αλαµαµλλ

ααωρ

 

( ) ( ) [ ] ( ) 0HH2 )2(
16

2
5

2
6

2
5

2)2(
143

2 =+++−− rkAAAkAkrkAAk TSSTTsLssL ββµµα  

( )( ) ( )( )[ ] ( )
( ) ( ) ( ) ( ) 0HiHi

Hexpexp

)2(
065

)2(
034

)2(
0212211

=+++−+

+−−−−

rkAAkrkAA

rkzzAzzA

TTLs

fffff

ωωα

αααα
                   (26) 

( )( ) ( )( )[ ] ( )
( )( ) ( )( )[ ] ( ) 0Hexpexp

Hexpexp
)2(

02625

)2(
02423

=−+−−−+

+−+−−−

rkzLAkzLAk

rkzLAzLA

TsTsT

Lssss

ββ

αααα
 

( )( ) ( )( )[ ] ( )
( )( ) ( )( )[ ] ( ) 0Hexpexp

Hexpexp
)2(

12625

)2(
12423

=−−−−+

+−−−−−

rkzLAzLA

rkzLAkzLAk

Tssss

LsLsL

ββββ

αα
 

 
The aforementioned system can be satisfied at all ranges r  if and only if: 

rfTL kkkk ===             (27) 

Substitution of this expression into the equations above yields: 
0Da =                         (28) 

For a non-trivial solution ( )det D  should be set equal to zero, which results in a set of discrete 

real and imaginary wavenumbers pk , ∞= ,...,3,2,1p  for each excitation frequency. Each 

wavenumber corresponds to a mode (the so-called eigenfunction) so that the final response 
can be represented as a modal sum over all eigenmodes: 

( ) ( ) ( )∑
∞

=

=
1

,
)2(

0p
~HC,,~

p
pfpf zrkzr ϕωϕ  

( ) ( ) ( )∑
∞

=

=
1

,
)2(

0p
~HC,,~

p
psps zrkzr ϕωϕ               (29) 

( ) ( ) ( )∑
∞

=

=
1

,
)2(

1p
~HC,,~

p
psps zrkzr ψωψ  

All other physical quantities can be expressed in terms of the aforementioned potentials, i.e. 
for the displacement vector of the soil we can write down: 

( )
( ) ( ) ( )

( ) ( ) ( )


















=

=
=

∑

∑
∞

=

∞

=

1
,,

)2(
0p,

1
,,

)2(
1p,

~HC,,~

~HC,,~

,,~

p
pszpsz

p
psrpsr

zurkzru

zurkzru

zr
ω

ω
ωu  etc.           (30) 

 
Orthogonality relations and correlation of the modal coefficients 

An appropriate integral representation of the interface conditions (21) - (23) correlates the 
unknown modal coefficients of the shell structure nmA  with those of the soil-fluid domain pC . 

The linear combination can be found by using the orthogonality relation of the fluid-soil 
modes. The orthogonal domain of the shell structure in vacuo is the domain Lz ≤≤0 . 
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Accordingly, the orthogonal domain of the combined fluid-soil modes is the domain 
Lzz ≤≤1 . In mathematical terms the orthogonality property for the shell modes implies that: 

mkm

L

km Ndz δ0

0

00 =∫ uu              (31) 

, where m0u  and k0u  refer to two different shell modes. The norm mN0  becomes: 

∫ +=
L

mrmzm dzUUN
0

2
0

2
00              (32) 

Based on integral representation theorems of elastodynamics and a derivation similar to that 
followed by Herrera (Herrera, 1964), it can be shown that for the case of a layered medium 
occupying the domain Lzz ≤≤1 , the following orthogonality condition holds: 

( ) ( ) ( )
( ) ( )

( )
pqp

L

z p

pzr
qzqzz

p

pr
fs

q

qr

p

pr
qfs dz

k

z
zuz

k

zu

k

zu

k

zu
k δ

σ
σηζ Γ=












++∫

1

,
,,

,
;

,,2
;

~
~~

~~~
       (33) 

, in which fs;ζ  and fs;η  are given by: 

( )[ ]
2

2224 2

L

TLLs
s c

ccc −−
=

ρ
ζ , 0=fζ , 

2

22 2

L

TL
s c

cc −
=η  and 1=fη . Note also that for the fluid 

zone (((( )))) (((( ))))zpz qfqzz ,,
~ −−−−====σ . The soil-fluid modes can be normalized such that: 

( )
( )

( ) ( )
( )

1
~

~~
~

~

1

,
,,

,
;

2
,

2
; =












++=Γ ∫ dz

k

z
zuz

k

zu
zuk

L

z p

pzr
pzpzz

p

pr
fsprpfsp

σ
σηζ           (34) 

We first expand the interface conditions at Rr = , i.e. (21) – (23) in the modal-wavenumber 
domain, i.e. in terms of Eqs.(30). By pre-multiplying both sides of each equation with 
appropriate stress or displacement functions and after carrying out an integration over the 
soil-fluid domain we obtain the following system of algebraic equations correlating the 
unknown shell and soil-fluid coefficients: 

(((( )))) (((( )))) ∑∑∑∑∑∑∑∑ ++++====
∞∞∞∞

====

∞∞∞∞

==== 11

2
10 H

q
qpq

m
ppppmpm LCRkkCQA Γ ,                      (35) 

with: 

( ) ( ) ( ) ( ) ( )
( )

dz
k

z
zUzzUzuzUkQ

L

z p

pzr
mzpzzmrfsprmrpfsmp ∫












++=

1

,
0,0;,0;

~
~~ σ
σηζ  

( ) ( ) ( ) ( )[ ] ( ) ( ) ( )
( )

∫∫











−=

L

z q

qzr
qzq

L

z

qzrpzqqp dz
k

z
zuRkdzzzuRkL

22

,
,

2
0,,

2
1

~
~H~~H

σ
σ  

 
Solution to the coupled problem 

A substitution of the modal representation of the two sub-systems into Eq. (10) yields: 

{ } ( ) { } ( )

( ) ( ) ( ) ( )[ ] ( ) ( ) ( )zzzRCzzHzzHzRCzzH

zAzA

ext
p

pfp
p

psp

m
mmmm

δ⋅+⋅−−−+⋅−−=

=+

∑∑

∑
∞

=

∞

=

∞

=

fpσ

UIUL mod

~
,~,~

~~~

1
,21

1
,2

0
0000

    (36) 

By applying the orthogonality property of the shell modes, the following set of coupled 
algebraic expressions can be obtained: 
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( ) ( ) ( ) ( ) ( ) ( )∫∫∑ ∫ ⋅+





⋅+






⋅−=⋅

∞

=

L

ext

z

z

pfm
p

L

z

psmpmm dzzzdzzRzzRzCIA
0

,0
0

,000

~
,~~

,~~ 2

12

δfpUσU       (37) 

Eqs. (35) and (37) form a coupled system of algebraic equations which need to be solved 
simultaneously for both mA0  and pC  for an externally applied force at the pile head. 

 

WAVENUMBER INTEGRATIONS METHODS VERSUS MODAL ANALYSIS 

In this section the same problem is solved with the use of the Hankel transform method 
(HTM) with respect to the radial coordinate of the system. This allows us to prove the validity 
of Eq.(27) and to discuss some of the main similarities and differences between the separation 
of variables method (SVM) and the HTM. The unified treatment discussed here shows that 
the modal method is nothing more but a special case of the more powerful integral transform 
technique. Therefore one should always be aware of the simplifications introduced by the 
SVM and of the fact that the completeness of the modal sum is not a priori guaranteed. 
 
Solution based on the Hankel transform method 

Eq. (28) can actually be obtained by searching for all the potentials in the form of the inverse 
Hankel transform defined at the interval r R≥ :  

( ) ( ) ( )∫
∞

=
0

J ξξξξ drFrf n
Hn                (38) 

Using the above representation, Eqs.(11)-(13) can be transformed to: 

( )
( ) 0,,ˆ

,,ˆ
0

0

2
2

2

=− ωξϕα
ωξϕ

z
dz

zd H
ff

H
f , with    2

2
22

f
f c

a
ω

ξ −=          (39) 

( ) ( ) 0,,ˆ
,,ˆ

0

0
2

2

2

=− ωξϕα
ωξϕ

z
dz

zd H
ss

H
s , with    2

2
22

L
s c

a
ω

ξ −=          (40) 

( ) ( ) 0,,ˆ
,,ˆ

1

1
2

2

2

=− ωξψβ
ωξψ

z
dz

zd H
ss

H
s , with    2

2
22

T
s c

ω
ξβ −=          (41) 

The solutions to the above equations are given by: 

( ) ( ) ( )zAzAz ff
H
f ααωξϕ expexp,,ˆ 21

0 +−=  
( ) ( ) ( )zAzAz ss

H
s ααωξϕ expexp,,ˆ 43

0 +−=  
( ) ( ) ( )zAzAz ss

H
s ββωξψ expexp,,ˆ 65

1 +−=             (42) 
The pressures, stresses and displacements of the two media are given by: 

( ) ( ) ( )∫
∞

−=
0

0J,,ˆi,,~ 0 ξξωξϕξωρω drzzrp H
ff

 

( )
( )

( )∫
∞

=
0

0, J
,,ˆ

,,~
0

ξξ
ωξϕ

ξω dr
dz

zd
zrv

H
f

fz
 

( ) ( ) ( ) ( )∫
∞









+−=

0

1, J,,ˆ
,,ˆ

,,~ 0

1

ξξωξϕξ
ωξψ

ξω drz
dz

zd
zru H

s

H
s

sr
         (43) 
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( ) ( ) ( ) ( )∫
∞









+=

0

0, J,,ˆ
,,ˆ

,,~ 1

0

ξξωξψξ
ωξϕ

ξω drz
dz

zd
zru H

s

H
s

sz
 

( ) ( ) ( ) ( ) ( ) ( )∫
∞



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A substitution of these solutions into the boundary and interface conditions, i.e. Eqs. (14)-
(19), yields the system of equations (28) with the following equivalence rk=ξ . Since the 
boundary conditions have to be satisfied for all r R≥ , it is clear that they must be satisfied by 
the kernels in the integral representations resulting from substitution of Eqs.(43) into the 
boundary conditions. This statement is equivalent to the one introduced earlier by Eq.(27). In 
other words, by setting the separation constants equal to each other we actually make sure that 
the modes will satisfy the boundary conditions at every r . The analogy between the SVM and 
the HTM in this particular problem actually proves the validity of Eq.(27). 
 
Case of a bounded domain in depth 

The derivation presented in the previous section clearly demonstrates the close relationship 
between the wavenumber integration methods and modal analysis methods. However, the 
modal representation is exact only when the modal sum is complete, which actually implies 
that additional wavenumbers, other than those located by solving the soil-fluid eigenproblem, 
do not contribute to the field. To illustrate this, we first note that the Bessel functions of the 

first kind introduced in Eqs. (43) can be replaced by ( )(2)1
H

2 n rξ  with the simultaneous 

extension of the lower integration limit to −∞→ξ . The resulting integrals can be evaluated 
using the contour integration approach and the residue theorem. It is important to note here 
that the kernels of the inverse Hankel transforms are single-valued functions of ξ  despite of 

the existence of the square roots 
2

;

2
2

;
Lf

sf c
a

ω
ξ −=  and 

2

2
2

T
s c

ω
ξβ −=   in the integrands. 

This can be easily verified by checking the invariance of the integrands with respect to the 
substitution ξ ξ= − . Given the single-valuedness of the integrands, in the evaluation of the 
integrals by means of the contour integration method, only the poles need to be accounted for.  
One can locate the poles in the complex plane by simply solving Eq.(28). Positions of the 
poles are shown indicatively in Fig. 2. The physical meaning of the real and imaginary poles 
which represent the radial wavenumbers will be given in the next section. By using Cauchy's 
theorem the original integration path can be deformed along the real axis to the one depicted 
by the bolt (blue) line as shown in Fig. 2 into the complex plane in order to avoid the poles. 
The radiation condition at infinity determines whether the contour should pass below or above 
the poles on the real axis. The contour integration technique yields the following relation: 

( )∑∫∫
∞

=∞−

+∞

∞−

=+
1p

resπi2 p

C

k                    (44) 
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Fig.2 Complex contour integration path for the case of a bounded medium 

 
In Eq.(44) the functions to be integrated are those defined by Eqs.(43). We note that the 
semicircle ∞−C  goes to infinity and subsequently the second integral in (44) goes to zero 
because the Hankel function decays as the radius of the semicircle increases. Eq.(44) can be 
rewritten as: 

( )∑∫
∞

=

+∞

∞−

=
1p

resπi2 pk                     (45) 

, which actually implies that the original integration over the whole range of wavenumbers is 
equal to the sum of the residues enclosed by the chosen integration path. The residues 
themselves correspond to the modes of the problem at hand. In other words, the representation 
of the response of the bounded fluid-soil domain in the form of a modal sum is exact. 
 
Case of an unbounded domain in depth 

Now let us assume that the soil is not terminated at Lz =  and that the rigid boundary is 
replaced by a half-space extending to +∞→z  (Fig. 3). In this case the integrands are no 
longer single-valued. Therefore, the appropriate branch cuts should be introduced in the 
complex ξ − plane as shown in Fig. 3.  

 
Fig.3 Complex contour integration path for the case of an unbounded medium 
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Accounting for the integration along the branch cuts, the Cauchy's theorem yields: 

( )∑∫∫∫
∞

=∞−

+∞

∞−

=++
1p

resπi2 p

branchC

k                 (46) 

A comparison of (44) and (46) shows that an additional integral is present over the branch 
cuts in the case of the half space. In contrast to the bounded domain, this integral will 
contribute to the resulting deformation field: 

( ) ∫∑∫ −=
∞

=

+∞

∞− branch

pk
1p

resπi2                    (47) 

The additional contribution of the branch line integrals clearly makes the modal sum 
incomplete. A physical interpretation of this result is as follows. The branch cuts contributing 
to the above equation in terms of leaky waves correspond to ;0 / Lb Tbcξ ω< < . By 

understanding the fact that the Hankel representation is actually a decomposition of the field 

in terms of conical waves, the small wavenumbers TbLbc ;/ωξ ≤ , will correspond to steep 

angles of incidence of the conical fronts on the half space surface ( Lz = ). For those steep 
angles of incidence radiation of energy in the form of body waves in the half space is 
unavoidable. This continuous radiation is not captured by the normal modes which actually 
represent only that part of the spectrum corresponding to the energy trapped in the waveguide. 
The simplification originally introduced by the rigid bottom hypothesis at Lz =  becomes 
now apparent. In this latter case, even wave fronts with steep angles of incidence do not lose 
any energy when reflecting from the bottom of the system and the energy is locked in the 
waveguide which, in turn, makes Eq.(45) valid. In this work we would like to interpret this 
result from a different point of view. By checking whether the generated wave fronts from the 
pile vibrations in the soil zone are formed with large or small angles to the vertical we can 
directly conclude as to whether the modal summation is a good representation of reality or 
not. As will be shown later, for large penetration depths of the pile into the soil, the main part 
of the energy will indeed be trapped in the waveguide which makes our representation of the 
response in the form of Eq.(45) valid for almost all cases of practical interest.  
 

NUMERICAL RESULTS 

In this section the response of the coupled system is examined for a specific set of material 
and geometrical parameters similar to those introduced in (A.Tsouvalas and A.V.Metrikine, 
2013).  

Parameter Value Units Parameter Value Units 
E 2,10E+11 N/m2 vs 0,40 - 

v 0,28 - ρs 1600 Kg/m3 

ρ 7850 Kg/m3 Es 1,00E+08 N/m2 

ηshell 0,001 - Gs 3,57E+07 N/m2 

R 0,46 m λs 1,43E+08 N/m2 

2h 0,02 m cL 366 m/s 

L 32,4 m cT 149 m/s 

z1 6,50 m ρf 1000 Kg/m3 

z2 13,4 m cf 1500 m/s 

 
Table 1. Material constants, geometrical parameters and soil properties (reference values) for the examined case 
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The geometrical configuration and material properties are those given in table 1 unless stated 
otherwise. At first, the dispersion relation of the exterior (to the pile) domain is examined 
since this is essential in order to understand and analyse the various types of waves that can 
propagate in the media. Secondly, the forced response of the system is examined in both time 
and frequency domains. Finally, the soil parameters are modified in order to check the 
sensitivity of the response for different soil properties. Special attention is paid to the 
examination of the influence of the Scholte waves on the pressure levels in fluid. 
 
Dispersion relation and waveforms 

The obtained dispersion relation ( pk−ω  diagram) for the propagating modes of the exterior 

soil-fluid domain is shown in Fig.4. The term propagating modes is used here to reflect modes 
with purely real wavenumbers in the case of a perfectly elastic solid or complex wavenumbers 
with a real part being much larger than the imaginary one for those cases in which material 
dissipation is included. Each point on the graph represents a solution of the dispersion relation 
of the exterior domain. The three phase velocities are easily distinguishable and are marked 
with thick bold lines for comparison. In the dispersion plot, the distinguished root resulting in 
the lowest phase velocity corresponds to the Scholte wave travelling along the seabed 
interface. This root is present for any soil-fluid configuration. On the contrary, the leaky-
Rayleigh wave becomes forbidden for most cases of practical interest because the phase 
velocity of the shear waves in the soil medium is much smaller than that of the bulk waves in 
the fluid. The Scholte wave corresponds to a purely real wavenumber in a perfectly elastic 
solid. Its amplitude decays exponentially as one moves away from the interface in both media 
and as such it is a true interface wave. A detailed description of the aforementioned 
waveforms can be found elsewhere (Glorieux et al., 2001). 

 
Fig.4 Dispersion relation for frequencies up to 600Hz (propagating modes only) 
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Forced response of the system 

In this section, results are presented for the case of a system with the geometrical 
configuration and the material properties as given in table 1. The load is applied at the pile 
head with no inclination to the vertical. The external load corresponds to a hammer input 
energy of 90 kJ. The maximum force amplitude equals 12 MN and the duration of the main 
pulse is equal to 5 ms. 
 

 (a) 

(b) 
Fig.5 Pressure amplitude spectra of the fluid in Pa s for (a) r=1 m and (b) r=15 m from the surface of 

the pile and for a depth equal to 5.5 m from the sea surface 
 

In Fig.5 pressure amplitude spectra are shown for two radial distances and for a point 
positioned close to the seabed surface. The pressure amplitudes are plotted versus the ones 
obtained using a similar model developed in (A.Tsouvalas, A.V.Metrikine, 2013), in which 
the soil is described by distributed spring and dashpots. As can be seen, the results are similar 
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for frequencies higher than 500 Hz. For lower frequencies, the difference in the pressure 
amplitudes between the two models is large. The sharp cut-off frequency present in the case 
of (A.Tsouvalas, A.V.Metrikine, 2013) disappears when a three-dimensional description of 
the soil is included. The soil seems to play a major role in the lower frequency regime where 
the coupling between the soil vibrations and the fluid zone is strong.  

 

(a) 

(b) 
Fig.6 Pressure amplitude spectra of the fluid in Pa s for (a) r=1 m and (b) r=15 m from the surface of 

the pile and for a depth equal to 2 m from the sea surface 
 
In Fig.6 results are presented for a point positioned 2m from the sea surface. Here the 
differences in the lower frequencies are smaller because of the fact that the sea surface is 
assumed to be free in both models. In Fig.7, displacement amplitude spectra of the soil are 
shown for a point positioned on the seabed and for two radial distances. It can be noticed that 
the soil contributes significantly to the field at frequencies lower than 400 Hz.  
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Fig.7 Displacement amplitude spectra for the soil in m s for r=1 m and r=15 m from the surface of the 

pile and for a point positioned at the seabed surface 

 
Fig.8 Pressures in the fluid (top) and vertical displacements in the soil (bottom) for different time 

moments after the impact (from left to right: t=1ms; t=5ms; t=10ms; t=15ms; t=25ms) 
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In Fig.8 the generated wave field is shown. The near-field response in the fluid zone is 
dominated by pressure Mach cones due to the supersonic compressional waves in the pile 
generated by the impact hammer. These waves are formed with an angle of approximately 

( ) ( ) 011 175000/1500sin/sin == −−
pf cc  to the vertical. The soil response is dominated by 

shear waves with almost vertical polarization. In this particular example the inclination of the 
shear fronts to the vertical is less than 02 . Scholte waves are generated at the seabed interface 
and propagate with a velocity slightly lower than that of the shear waves in the soil as can be 
seen from the slight bending of the shear fronts close to the seabed interface. In this example 
the estimated Scholte wave speed is approximately equal to 13389.0 =Tc ms-1. 
Finally, in Fig.9 the generated velocity pulse propagating downward the pile is shown. The 
horizontal axis shows the vertical velocity in ms-1 and the vertical axis shows the distance 
from the pile head. As can be seen the wavefront propagates with a velocity slightly higher 
than 5000 ms-1. It is worth to mention that the region in front of the first wavefront remains 
quiescent until the first wave reaches it. The sharpness of the front for the frequencies 
involved is guaranteed by the high order thin shell theory applied in this case which includes 
high order effects like shear deformation and rotational inertia. 
 

 
Fig.9 Velocity evolution with time for the shell structure 

 
 
Influence of the soil elasticity 

In this section, the soil stiffness sE  is varied in order to examine its influence on the response 

of the coupled system. Three cases are examined which are summarised in table 2. The rest of 
the material properties are kept constant and are given in table 1. 
 



 Integrity, Reliability and Failure of Mechanical Systems 

IRF’2013  17

Parameter Value Units Parameter Value Units Parameter Value Units 
E1 1,00E+8 N/m2 cL1 366 m/s cT1 149 m/s 

E2 5,00E+8 N/m2 cL2 818 m/s cT2 334 m/s 

E3 5,00E+7 N/m2 cL3 258 m/s cT3 105 m/s 

 
Table 2 Phase velocities for different elasticity moduli 

 
In Fig.10, the pressure amplitude spectra are shown for the three cases and for a point 
positioned at a depth equal to 5.5m and at a radial distance equal to 5m from the pile surface. 
The point is again chosen close to the seabed where the influence of the soil is expected to be 
larger. As can be seen, the differences are significant only at the lower frequency regime, i.e. 
for 400≤f  Hz. Regarding the response in the time domain the following conclusions can be 
drawn. Firstly, the pressures in the fluid zone are increased close to the seabed in the case of 
the stiff soil. Secondly, the stiffer the soil the smaller the penetration depth of the Scholte 
waves into the soil. For stiffer soils, the energy is mainly localized in the fluid. Similar results 
have been obtained in other studies regarding the penetration depth of the Scholte waves into 
solids (Glorieux et al., 2001). The increase of the pressures for stiffer substrates has also a 
clear physical explanation: stiffer soils provide larger resistance to the compressional waves 
travelling downwards the pile and therefore most of the energy is reflected upward as soon as 
from the soil-fluid interface resulting thus in higher pressure levels in the fluid. This 
phenomenon is less dominant for soft soils in which a larger portion of the input hammer 
energy is absorbed by the soil in the form of wave radiation. Finally, the shear cones show a 
larger inclination to the vertical for stiffer soil sediments. For the case in which 

500=sE Mpa, the angle of the shear cones is slightly less than ( ) 01 4/sin ≈−
pT cc . The shear 

front bends towards the seabed interface (becomes almost vertical). This strong curvature of 
the front is mainly attributed to the Scholte wave and is completely absent when the Scholte 
root is excluded from the modal summation.  
 

 
Fig.10 Pressure amplitude spectra of the fluid in Pa s for r=5 m and a depth equal to 5.5 m from the 

sea surface for different sediment types 
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CONCLUSIONS AND DISCUSSION 

In this paper a novel approach is presented for the study of the coupled vibro-acoustics of 
piles in layered media. Although the focus was mainly on the generated pressure field in the 
fluid column, it is clear that exactly the same model can be used for prediction of vibration 
levels in the soil region for pile driving activities either offshore on onshore. The pile is 
described by an appropriate thin shell theory which includes the effects of both shear 
deformation and rotational inertia. The fluid is modelled as a three-dimensional compressible 
medium with a pressure release boundary describing the sea surface. The soil is described as a 
three-dimensional continuum able to support both dilatational and shear waves and is 
terminated at the pile tip level with a rigid boundary. The influence of the rigid boundary is 
discussed on the basis of complex contour integrations over the horizontal wavenumbers. A 
comparison of the modal analysis approach with the wavenumber integration method shows 
that the former is actually a special case of the latter and as such it can be accurate only when 
certain conditions are met. Thus, the completeness of the modal sum should always be 
checked since it is not a priori guaranteed. In the case of pile driving it is shown that for most 
cases of practical interest the model can provide reliable predictions of the sound levels in the 
fluid and of the vibrations levels in the soil. The accuracy increases the larger the penetration 
depth of the pile into the soil and the softer the soil sediment.  
 
A reference case for which experimental data are available for comparison is analysed in both 
time and frequency domains. At first, a physical interpretation of the dispersion relation is 
given. In the dispersion plot, the distinguished root for the lowest phase velocity corresponds 
to the Scholte wave travelling along the seabed interface. This root is present for any soil-
fluid configuration.  
 
The near-field response in the fluid is dominated by pressure Mach cones due to the 
supersonic compressional waves in the pile generated by the impact hammer. The results are 
also compared with those of a similar model in which the soil is described by distributed 
springs and dashpots and are shown to agree well only for medium-high frequencies. For 
lower frequencies the spring-dashpot model cannot capture the soil-fluid coupling effects 
correctly. The soil response is dominated by shear waves with almost vertical polarization. 
Scholte waves are generated at the seabed interface. These waves propagate with a velocity 
slightly lower than that of the shear waves in the soil. It is shown that the Scholte wave 
influences the results at the lower frequency regime and in a confined region close to the 
seabed. The influence of soil elasticity on the response of the system is analysed. As expected, 
the shear cones in the soil show a larger inclination to the vertical for stiffer soil sediments. 
The results also indicate that the pressures in the fluid are increased close to the seabed in the 
case of a stiffer soil. 
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