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ABSTRACT

Cracks or other defects in a structural element influence its dynamic behaviour and change its
stiffness and damping properties. Consequently, the natural frequencies and mode shapes of
the structure contain information about the location and dimensions of the damage. Vibration
analysis can be used to detect structural defects, such as cracks, of any structure offer an
effective, inexpensive and fast means of non destructive testing. Present work deals with the
vibration and buckling analysis of a cantilever beam made from graphite fibre reinforced
polyamide with a transverse one-edge non-propagating open crack using the finite element
method. The effects of various parameters like crack location, crack depth, multiple cracks
upon the changes of the natural frequencies of the beam are studied. Critical fracture
parameters governing the severity of stress and deformation field ahead of the cracks were
evaluated. To ensure the safe, reliable and operational life of structures, it is of high
importance to know if their members are free of cracks and, should they be present, to assess
their extent. So, the primary objective of Structural Health Monitoring is to detect a variety of
damages at the earliest possible stage to prevent catastrophic failure.

Keywords: Composite Materials, Crack detection, Damage Diagnosis, Vibration Analysis

INTRODUCTION

Preventing failure of composite material systems has been an important issue in engineering
design. Composites are prone to damages like transverse cracking, fiber breakage,
delamination, matrix cracking and fiber-matrix debonding when subjected to service
conditions. The two types of physical failures that occur in composite structures and interact
in complex manner are intralaminar and interlaminar failures. Interalaminar failure is
manifested to micro-mechanical components of the lamina such as fiber breakage, matrix
cracking, and debonding of the fiber- matrix interface. Generally, aircraft structures made of
fiber reinforces composite materials are designed such that the fibers carry the bulk of the
applied load. Interlaminar failure such as delamination refers to de-bonding of adjacent
lamina. The possibility that interalaminar and interlaminar failure occur in structural
components is considered a design limit, and establishes restrictions on the usage of full
potential of composites.

As one of the failure modes for the fiber-reinforced composites, crack initiation and
propagation have long been an important topic in composite and fracture mechanics
communities. During operation, all structures are subjected to degenerative effects that may
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cause initiation of structural defects such as kgaeghich, as time progresses, lead to the
catastrophic failure or breakdown of the structurbus, to ensure the safe, reliable and
operational life of structures, it is of high impamce to know if their members are free of
cracks and, should they be present, to assesttieint.

METHODOLOGY

The basic configuration of the problem investigateete is a composite beam with a
transverse one-edge non-propagating open crackypfcal cantilever composite beam
structure has tremendous applications in aerosnectures and high-speed turbine
machinery.

The following aspects of the crack greatly influertise dynamic response of the structure.

I. The position of a crack in a cracked composite beam
il. The depth of crack in a cracked composite beam

ii. The number of cracks on the composite beam

V. The effect of cracks on buckling loads

The assumptions made in the analysis are:

I.  The analysis is linear. This implies constietrelations in generalized Hook’s law for
the materials are linear.

ii. The Euler—Bernoulli beam model is assumed.

lii. The damping has not been considered in ttudys

iv. The crack is assumed to be an open crack and & uniform width

GOVERNING EQUATION

The governing equations for the vibration analydishe composite beam with an open one-
edge transverse crack are developed. Here an@uifiexibility matrix related to the crack
is added to the normal flexibility matrix to obtaime total flexibility matrix of the
corresponding composite beam element.

The differential equation of the bending of a beaith a mid-plane symmetry (B= 0) so
that there is no bending-stretching coupling andiraosverse shear deformatian £€0) is
given by;

d*e
|511@:q X (1)

It can easily be shown that under these conditibtise beam involves only a one layer,

isotropic material, then,
3
ISy = El =
and for a beam of rectangular cross-section Poissatio effects are ignored in beam theory,
which is in the line with (Gaith, 2011).
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In Equation 1, it is seen that the imposed stata lis written as a force per unit length. For
dynamic loading, if Alembert’s Principle is usecekthone can add a term to Equation.1 equal
to the product of mass and acceleration per ungtte In that case Equation.1 becomes

d*o(x,t)_ dZe(xt)

|S]_1 e —Q(X,t) -pA e (2)

whereo and g both become functions of time as well axepand derivatives therefore
become partial derivatives,is the mass density of the beam material, and Aésethe beam
cross-sectional area. In the above, q(x, t) is tieevspatially varying time-dependent forcing
function causing the dynamic response, and couldnlyghing from a harmonic oscillation to
an intense one-time impact.

For a composite beam in which different lamina hdifeering mass densities, then in the
above equations use, for a beam of rectangulass®dtion,

pA=pbh = "pbh —hy_, ©)
However, natural frequencies for the beam occuuastions of the material properties and
the geometry and hence are not affected by thénfpfanctions; therefore, for this study let

q(x, t) be zero.

Thus, the natural vibration equation of a mid-plagmmetrical composite beam is given by;

d*oxb) d?o(x,t) _
dx* PA dx? =0 (4)

1S11
It is handy to know the natural frequencies of bgedon various practical boundary conditions
in order to insure that no recurring forcing fuocs are close to any of the natural
frequencies, because that would result almost iogrtan a structural failure. In each case
below, the natural frequency in radians/unit time given as

IS, , 12
Q)n:(lz 11
pAL*

(5)

Wherea? is the co-efficient, which value is catalogued(Bgnerjee, 1996) and once, is
known then the natural frequency in cycles per sécblertz) is given by,f= wn/2x, which is

in line with (Gaith 2011).

MATHEMATICAL MODEL

The model chosen here for our analysis is a cortgoantilever beam as shown in the figure-
1. It is of uniform cross-section A, having an ojeglge transverse crack of depth ‘a’ at
position ‘ly’. The width, length and height of the beam ardé.Bnd H respectively. The angle
between the fibers and the axis of the bearw’is *
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Fig 1: Schematic diagram of a composite cantilever  Fig 2: Geometry of the non-cracked composite
beam with a crack cantilever beam with 12 elements

RESULTSAND CONCLUSIONS

The finite element solver namely ANSYS 10.0 is udedperform all the necessary
computations. In the initialization phase, geomeing material parameters are specified. For
example for a Euler-Bernoulli composite beam mouddh localized crack, material
parameters like modulus of elasticity, the modwtisgidity, the Poisson ratio and the mass
density of the composite beam material along wibrgetric parameters like dimensions of
the composite beam, also the specifications ofddreage like size of the crack, location of
the crack and extent of crack are supplied as idatd into the preprocessor of the ANSYS
10.0 software. The beam is descritized into n nurmbelements. The model is then solved to
obtain the non-dimensional natural frequencies andkling load for non-cracked and
cracked composite beam element.

Table 1. Material Properties of Composite Beam

Modulus of Elasticity E 2.756 GPa
E 275.6 GPa
Modulus of Rigidity G 1.036 GPa
G 114.8GPa
Poisson’s Ratio Y 0.33
Vi 0.2
Mass density Pm 1600 kg/m
Pt 1900 kg/m

The results of vibration and buckling analysis omposite beam structure with or without
crack were found out using the above given fornmtatEach of the cracked composite beam
problems are presented separately for the followingies:

I. Convergence testing

[l.Vibration and Buckling analysis of beam with gie crack
lll. Vibration and Buckling analysis of beam withuftiple cracks
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CONVERGENCE TESTING

A fundamental premise of using the finite elememcpdure is that the body is sub-divided
up into small discrete regions known as finite edais.It is necessary to conduct convergence
tests on finite element model to confirm that sefenough element discretization has been
used. In this problem, this would be done by crepsieveral models with different mesh sizes
and comparing the resulting natural frequenciesraode shapes.

Table 2. The results of natural frequencies foiedént mesh divisions

M esh First Natural Second Natural Third Natural
Division | frequency (H2) frequency(Hz) frequency(Hz)
2 0 24.225 25.005
3 15.689 24.654 29.433
4 13.684 24.531 25.387
5 13.67 24.53 25.32
6 13.55 24.44 25.311
7 13.52 24.39 24.72
8 13.519 22.378 24.413
9 13.517 22.37 24.41
10 13.512 22.368 24.4
11 13.51 22.33 24.394
12 13.495 22.277 24.392
13 13.494 22.265 24.392
14 13.493 22.265 24.392

CONVERGENCE PLOT
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Fig 3: Geometric modeling of the cracked beam dond-ig 4: Convergence plot indicating the Level of Mes
in ANSYS size versus Natural Frequency in Hertz

VIBRATION ANALYSIS

After carrying out the convergence study of the-omacked beam various crack scenarios are
simulated using the ANSYS 10.0 CAE software packddge results of the non-dimensional
natural frequencies as a function of various crackations are presented here. Initially the
cracks are simulated for a uniform crack depth.&fal various crack locations. The locations
are indicated in terms of relative crack locatifnasn the fixed end. The beam is made up of
unidirectional graphite fiber reinforced polyamicemposite material
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The geometrical characteristics of the beam arentas length = 1m, breadth = 0.050m and
height = 0.025m respectively. The finite elemenésevaken as brick 8 Node 45. These were
selected because, due to the presence of crackdyelim will assume an irregular cross
section. The material properties were as listebable-1.

The crack locations and crack depths were variambtain the vibration characteristics of the
beam. So, the variables are Relative crack locg&&L) and relative crack depths (RCD)

Lengthofthebeamatcrack
RCL = Lengthof

OriginalLength

__ Depthofthecrack (a)
- Heightofthebeam (h)

Six RCL values were taken by keeping each RCD emmsiThe various relative locations
were taken at 0.1, 0.2, 0.4, 0.6, 0.8, and 0.%&smely.

Variation of Natural Frequencies on Account of Crack Locations
In the first six runs the beam having a constalattikee crack depth (RCD) = 0.1 is simulated
at various locations (RCL), at 0.1, 0.2, 0.4, @@, and 0.9 and were analyzed and the first,
second and third Natural Frequencies were found This procedure is repeated for all the

values RCD and correspondingly graphs were plotted.

Table 3 List of natural frequencies at various krac Table 4 List of natural frequencies at various kidacations

locationsat RCD of 0.1 at RCD of 0.2
RcL | FirstNatural Second Natural | Third Natural RcL | FirstNatural | Second Natural | Third Natural
frequency(Hz) | frequency(Hz) | frequency(H2) frequency(Hz) | frequency(Hz) | frequency(Hz)
0.1 401.6 795.06 2495.9 0.1 400.15 793.45 2503.8
0.2 409.55 796.61 2521.5 0.2 398.52 793.93 2509.4
0.4 399.94 794.85 2532.2 04 397.8 793.91 2509.9
0.6 408.32 797.58 2584.5 0.6 401.07 796.13 2526.3
0.8 397.67 795.32 2488.6 0.8 398.88 796.52 2515.2
0.9 404.85 796.83 2520.4 0.9 397.88 795.13 2490.4
Relative Crack location vs Natural frequencies at Relative crack Location vs Natural Frequency at
RCD=0.1 RCD=0.2
3000 3000
2500 1 - | [Z=FirstNawral 2500 | |—e—First Natural
2000 frequency 2000 4 frequency

—=— Second Natural
frequency

1000 Third Natural

frequency

—a— Second Natural
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Fig 5. Relative Crack location versus Natural fregeies  Fig 6. Relative Crack location versus Natural fregies
atRCD=0.1 atRCD =0.2
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Table 5 List of natural frequencies at various kracations Table 6 List of Natural frequencies at various krac
at RCD of 0.4 locationsat RCD of 0.6
RCL First Natural Second Natural | Third Natural RCL First Natural Second Natural Third Natural
frequency(Hz) | frequency(Hz) | freguency(Hz) frequency(Hz) | frequency(Hz) | freguency (H2)
0.1 395.12 786.49 2549.4 0.1 335.33 773.14 2453.7
0.2 397.13 789.95 2615.6 0.2 540.84 1077.2 3407.7
0.4 404.39 796.61 2686.4 0.4 706.89 1173.2 4468.7
0.6 400.68 799.95 2578.7 0.6 715.4 1211.3 4243.8
0.8 445,57 826.46 3144.3 0.8 684.96 1301.1 4317
0.9 766.35 1327.1 4669.7 0.9 632.31 1138.6 3979.2
Relative Crack Location vs Natural Frequency at Relative Crack Location vs Natural Frequencies at
RCD=0.4 RCD=0.6
5000 5000
= 4500
T 4000 i I T 4000 — -
> +:?g§;::$;ra g 3500 —o—fnst Natural
< 3000 S < 3000 requency
> —=—Second Natural ) —=— Second Natural
S 000 frequency g 2500 1 frequency
w ) (L 2000 - )
3 s Third Natural T 1500 | Third Natural
2 1000 frequency 5 frequency
5 — = L= | 2 1000 - _/-/"—_"/4\'
z — « +« 2 o e+
0 ‘ ‘ ‘ ‘ ‘ —
01 02 04 06 08 09 ° 0.1 | 0.2 | 0.4 | 0.6 | 0.8 | 0.9
Relative Crack Locations Relative Crack Locations

Fig7. Relative Crack location versus natural frewies Fig8. Relative Crack location versus natural fregues

atRCD=04 atRCD =0.6
Table 7 List of Natural frequencies at various krcations Table 8 List of Natural frequencies at various krcations
at RCD of 0.8 at RCD of 0.9
RCL First Natural Second Natural Third Natural RCL First Natural Second Natural Third Natural
frequency (Hz) | frequency (Hz) | frequency (Hz) frequency (HZ) | frequency (Hz) | frequency (H2)
0.1 467.39 1120.9 4637.6 0.1 325.72 969.49 4096.1
0.2 506.32 976.87 4606 0.2 356 933.57 4439.1
0.4 645.8 1121.4 3861.9 0.4 656.88 1096.4 3899
0.6 741.93 1247.3 3485.1 0.6 721.8 1229.1 3572.3
0.8 801.49 1308.1 4202.4 0.8 808.43 1235.5 4421.8
0.9 828.89 1348.3 4947 0.9 808.49 1285.5 4892.9
Relative Crack Location vs Natural Frequency at Relative Crack Location vs Natural Frequency at
RCD=0.8 RCD=0.9
6000 6000
£ 5000 e First Natural £ 5000 —e—First Natural
§ 4000 frequency § 4000 +— frequency
] —=— Second Natural ) -
g 3000 fr::L?:ncya ural g 3000 fsrsgsgsc)r\,latural
= 2000 Third Natural = 2000 Third Natural
S0 e ==& 8 frequency 5000 oo 2w frequency
ks — e * s w
0 T T T T T 0 T T T T T
0.1 0.2 0.4 0.6 0.8 0.9 0.1 0.2 0.4 0.6 0.8 0.9
Relative Crack Locations Relative Crack Location
Fig 9. Relative Crack location versusNatural fretpies Fig 10. Relative crack location versus natural
atRCD =0.8 frequencies at RCD = 0.9
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Variation of Natural Frequencies on Account of Crack depths

By rearranging the above results we can find theration characteristics of the beam
(Variation of natural frequencies) at a specificdbon For example, In the first six runs the
beam is having a crack at location 0.1 (constanL-RCl) However the depth of the crack
varies from 0.1 to 0.9. This crack growth is anatyand the following results were noted.

Table 9 List of natural frequencies at various krdepths  Table 10 List of natural frequencies at variouskrdepthsat

at RCL of 0.1 RCL of 0.2
RCD First Natural Second Natural | Third Natural RCD First Natural Second Natural | Third Natural
frequency (Hz) | frequency(Hz) | frequency(Hz) frequency (Hz) | frequency (Hz) | frequency (Hz)
0.1 401.6 795.06 2495.9 0.1 409.55 796.61 25215
0.2 400.15 793.45 2503.8 0.2 398.52 793.93 2509.4
04 395.12 786.49 25494 0.4 397.13 789.95 2615.6
0.6 335.33 773.14 2453.7 0.6 540.84 1077.2 3407.7
0.8 467.39 1120.9 4637.6 0.8 506.32 976.87 4606
0.9 325.72 969.49 4096.1 0.9 356 933.57 4439.1

Relative Crack Depth vs Natural Frequency at Relative Crack Depth vs Natural Frequency at
RCL=0.1 RCL=0.2
__ 5000 5000
z z
< 4000 —e—First Natural < 4000 - —e— First Natural
o frequency o frequency
%’_ 3000 —s— Second Natural < 3000 —=— Second Natural
E 2000 frequency E 2000 frequency
= Third Natural = Third Natural
5 1000 +—5 = _— frequency S 1000 55— frequency
= — o o ——— g —
Z 0 ‘ ‘ ‘ ‘ T Z 0 ‘ ‘ T T T
01 02 04 06 08 09 01 02 04 06 08 09
Relative Crack Depths Relative Crack Depths

Fig 11. Relative crack depthsversus Natural fraqises
atRCL=0.1

Fig 12. Relative crack depths versus Natural fraqiges
atRCL=0.2

Table 11 List of natural frequencies at variouskrdepthsat Table 12 List of natural frequencies at variouskrdepthsat

RCL of 0.4

RCD First Natural Second Natural | Third Natural
frequency (H2) frequency(Hz) | frequency(Hz)
0.1 399.94 794.85 2532.2
0.2 397.8 793.91 2509.9
0.4 404.39 796.61 2686.4
0.6 706.89 1173.2 4468.7
0.8 645.8 1121.4 3861.9
0.9 656.88 1096.4 3899

RCL of 0.6

RCD First Natural Second Natural | Third Natural
frequency (Hz) | frequency(Hz) | frequency(Hz)

0.1 408.32 797.58 2584.5
0.2 401.07 796.13 2526.3
0.4 400.68 799.95 2578.7
0.6 715.4 1211.3 4243.8
0.8 741.93 1247.3 3485.1
0.9 721.8 1229.1 3572.3
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Relative Crack Depth vs Natural Frequency at
RCL=0.4
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z
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Fig 13. Relative crack depths versusnatural fregiesn Fig 14. Relative Crack depths versus natural fraqies

atRCL=0.4

atRCL=0.6

Table 13 List of natural frequencies at variouskrdepthsat Table 14 List of natural frequencies at variouskrdepthsat

RCL of 0.6
RCD First Natural Second Natural Third Natural

frequency (H2) frequency(Hz) frequency(Hz)
0.1 408.32 797.58 2584.5
0.2 401.07 796.13 2526.3
0.4 400.68 799.95 2578.7
0.6 715.4 1211.3 4243.8
0.8 741.93 1247.3 3485.1
0.9 721.8 1229.1 3572.3

Relative Crack Depth vs Natural Frequency at
RCL=0.8

5000

E: 4000 —e—First Natural

) frequency

§ 3000 —a— Second Natural

8 2000 frequency

= = Third Natural

1000 5 u — frequency

g ’_M/‘_‘

01 02 04 06 08 09
Relative Crack Depth

RCL of 0.9
RCD First Natural Second Natural | Third Natural
frequency(Hz) | frequency(Hz) | freguency(Hz)
0.1 404.85 796.83 2520.4
0.2 397.88 795.13 2490.4
0.4 766.35 1327.1 4669.7
0.6 632.31 1138.6 3979.2
0.8 828.89 1348.3 4947
0.9 808.49 1285.5 4892.9
Relative Crack Depth vs Natural Frequency at
RCL=0.9
6000
< 5000 —e—First Natural
S 4000 frequency
;.)_ 3000 +fSr:;:Lcj)2:C}l\/latural
; 2000 Third Natural
5 1000 % frequency
2 _
01 02 04 06 08 09
Relative Crack Depths

Fig 15. Relative Crack depth versus natural freqigen Fig 16

atRCL=0.8

BUCKLING ANALYSIS

. Relative crack depth versus natural freqigen
atRCL=0.9

Buckling loads are critical loads where certainetypf structures become unstable. Each load
has an associated buckled mode shape; this ishiédyge sthat the structure assumes in a
buckled condition. There are two primary meansaidgym a buckling analysis.
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Eigen value buckling analysis predicts the theoattbuckling strength of an ideal elastic
structure. It computes the structural Eigen vafoeshe given system loading and constraints.
This is known as classical Euler buckling analyBisckling loads for several configurations

are readily available from tabulated solutions. ldwer, in real-life, structural imperfections

and nonlinearities prevent most real world struesufrom reaching their Eigen value

predicted buckling strength; i.e. it over-predittes expected buckling loads.

Nonlinear buckling analysis is more accurate thage value analysis because it employs
non-linear, large-deflection; static analysis tedgict buckling loads. Its mode of operation is
very simple: it gradually increases the applieddlomtil a load level is found whereby the
structure becomes unstable (i.e. suddenly a vewrjlsntrease in the load will cause very
large deflections). The true non-linear nature lo$ analysis thus permits the modeling of
geometric imperfections, load perturbations, materonlinearities and gaps. For this type of
analysis, small off-axis loads are necessary tatsithe desired buckling mode.

Variation of Buckling loads on account of crack locations

The result of the buckling analysis is as folloWwke variation of buckling loads on account
of crack locations as well as on account of cragthls is obtained.

Table 15 List of non-dimensional buckling loads for ~ Table 16 List of non-dimensional buckling loads for
various crack locations at relative crack depth8.@f  various crack locations at relative crack depth8.6f 0.8

0.2and 0.4 and 0.9
RCL RCD=0.1 | RCD=0.2 RCD=0.4 RCL RCD=0.6 RCD=0.8 RCD=0.9
0.1 6872.8 10454 10418 0.1 10399 33495 12950
0.2 6954.8 10418 10440 0.2 14735 31323 14903
0.4 6851.1 8256.7 10598 04 10573 35002 41137
0.6 6892 84445 10605 0.6 50817 55745 44749
0.8 6837.7 10464 12149 0.8 60894 66656 61164
0.9 6920.8 10442 15160 0.9 76142 81688 61180
Variation of Buckling loads with relative Crack Variation of Buckling loads with relative Crack
Locations Locations
16000 100000
5y 100 T 2 80000 -
£ B 12000 c3
2S 000 [ & n s s | [4 Rrcp=01 28 o000 /‘Z | [~—RcD=06
g = 8000 - —=—RCD=0.2 g2 e —=RCD=08
55 6000 RCD=0.4 R RCD=0.9
S > 4000 S5 |
22 0 S @ 20000 -
0 ‘ ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘ ‘
01 02 04 06 08 09 01 02 04 06 08 09
Relative Crack Locations Relative Crack Locations

Fig 17. Relative crack locations versus non din@mali  Fig 18. Relative crack locations versus non dinemei
buckling loads at relative crack depths Buckling loads at relative crack depths
of0.1,0.2and 0.4 of 0.6, 0.8 and 0.9
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The results are tabulated in separate tables anttiegl separately as it would rather
difficult to express in a single graph. So buckliogd values for RCD 0.1, 0.2 and 0.4
plotted inthe first graph and the remaining RCD values 05, 0.8and 0.9 are plotted in t
second graph.

The graphs basically indicate the relationship leetwthe crack parameters and the buck
loads. The figures 19 and 2@ow the variation of the buckg loads with respect to the cra
locations. This has been simulated for uniform krdepths of 0.1, 0.2 and 0.4. Similarly
the second graph buckling loads are plotted wipeet to the crack locations at unifo
crack depths of 0.6, 0.8 and (

It is seen that the buckling loads (the load at whietormation occurs) increases as the c
moves to the free end. This means that if the cimclear to the fixed end it becomes critit
i.e., the structure fails at low buckling loe

Thus the locabn of the crack is critical in the variation ofdiling loads. In other words tf
value of buckling loads is instrumental in detenminthe location or position of cracks in t
structure

Variation of Buckling loads on account of crack growth

Similar to the previous section, the results are tabulatedeparate tables and plot
separately as it would rather be difficult to exgzrén a single graph. So buckling load val
for RCL 0.1, 0.2 and 0.4 are plotted in the firsdjgh and the remaining R(values i.e. 0.6,
0.8and 0.9 are plotted in the second gr:

Table 17 List of nordimensional buckling loads f Table 18 List of nordimensional buckling loads f
various crack depths at relative crack locatiods 0.2 various crack depths at relative crack locatiogs
and 0.4 0.8and 0.
RCD RCL=0.1 | RCL=0.2 | RCL=04 RCD RCL=0.6 | RCL=0.8 | RCL=0.9
0.1 6872.8 6954.¢ 6851.1 0.1 6892 6837." 6920.8
0.2 10454 10418 8256.7 0.2 8444.5 1046/ 10442
0.4 10418 10440 10598 04 10605 1214¢ 15160
0.6 10399 14735 10573 0.6 50817 6089/ 76142
0.8 33495 31323 35002 0.8 55745 6665¢ 81688
0.9 12950 14903 41137 0.9 44749 6116/ 61180

rack Depths Variation of Buckling loads with Crack Depths
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100001 .
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Now the variation of buckling loads with respecthe crack growth is described here. Crack
growth essentially means the variation or incraagte relative crack depths of the beam. In
this case the RCL is kept constant for a set amdhdeare varied to find out the buckling
loads. It is found that as the crack depths in@éhs value of buckling loads also increases
and reaches a maximum and falls sharply. This atdgcthat minor cracks and major cracks
equally aid the buckling phenomenon and they bothegually dangerous. If the specimen
initially crosses the failure zone then it wouldthgitand further depth. But as the crack
growth continues abrupt failure was noticed

EFFECT OF MULTIPLE CRACKSON THE BEAM

In this section the effect of multiple cracks oe tantilever beam is being studied. Here only
three cracks are taken at a time for analysishinfirst part the effect of crack formation
nearer to the fixed end is studied and in the mmaxt crack formation at the free end is
studied. It is found that there is a notable changie frequency. The extent and nature of
change will help us to identify the number of craekd the possible concentration area of the
cracks on the beam. In the first part the crackssanulated at relative locations 0.1, 0.2 and
0.4 near to the fixed end and in the second parttacks are simulated at locations 0.6, 0.8
and 0.9 near to the free end.

Vibration Analysis of the Beam with Multiple cracks

The procedure for vibration analysis is same as dhdahe analysis done on a beam with
single crack. Here the mode shapes associatedeath natural frequency were also found
out. The beams with multiple cracks near to thediend and the beam with multiple cracks
near to the free ends were analyzed separately.nidae shape diagrams along with the
variation of natural frequency provide a strongnaimire of the crack found on the beam.

The figure 23 shows the geometry of the beam wighdracks at locations 0.1, 0.2 and 0.3.
When it undergoes vibration analysis their modepebagets extracted. The mode shape
shows the displacement of the beam from the meaitigo with respect to time when it
undergoes free vibration. The cracks simulatedoareniform depth of 0.6 RCD at locations
close to each other. By this analysis we will bkedb identify how the presence of multiple
cracks will alter the dynamic characteristics e team.

Table 19 First, Second & Third natural frequencgthe beam
with multiple cracks obtained from vibration anays

Table 20 Non dimensional buckling loads of
the beam with multiple cracks obtained from
Eigen Buckling Analysis

Location First Natural | Second Natural | Third Natural Location of the Non Dimensional
of theCracks | frequency(Hz) | frequency(Hz) | frequency(Hz) Cracks Buckling L oads
Fixed end 412.27 783.85 2694.6 Cracksat Fixed end 8530
FreeEnd 416.85 812.4 2727.5 Cracksat Free End 8798.9
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Variation of Natural Frequencies due to multiple cracks at the fixed and
free ends
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Fig 21. Bar chart showing the rise of natural fregey ~ Fig 22. Bar chart showing the changes in buckling
when the concentration of the crack Loadswhen the concentration of the crack
is near to the free end is near to the free end.

The results can be fed into a microprocessor andcbeastored s a reference for comparison.
Once the real time data, from the sensor, matchistie reference data, the crack or flaw
will be detected.

From the graphs it is found that as the beamst@eahibit a higher natural frequency if their
concentration is nearer to the free end. It isiapple to the cases of First, Second and Third
frequencies. But the rate of increase is higherther third frequency compared to the first
frequency. Moreover to gets an overall idea offtheture modes it is important to simulate
all crack scenarios. Future work is very much resglias the scope of this work is limited to
multiple cracks with uniform depth only. In additido this simulation may be performed
with cracks with varying densities on the beam.

Buckling Analysis of the Beam with Multiple cracks

Eigen value buckling analysis was performed in theam with multiple cracks. The
procedure being the same as adopted in the beamavdingle crack. But this was done in
two parts. In the first part the beam with multiglecks near to the fixed end was analyzed
and in the second part the beam with multiple gackar to the free end was done. The
results are as follows

Figure 23. Deformed shape of the beam with multipleFigure 24. Deformed shape of the beam with multiple
-acks after Eigen value buckling analysis whencttaeksracks after Eigen value buckling analysis whenctiagks
near to the fixed end near to the free end
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From the results it is found that the presence oltiple cracks near to the fixed end of the
beam is more critical than the presence of muligpéeks near to the free end. Also the mode
shape diagram is another signature which can b foseeomparing the characteristics of the
beam to the standard non cracked one. The buckiode shapes are as given in the figure 23
and 24. Thus the variation of buckling load and thode shape diagram gives us a clear
picture of the location and size of the crack tioat without any disadvantages faced in the
conventional non-destructive evaluation methods.

CONCLUSION

The following conclusions can be made from the g@mesnvestigations of the composite
beam finite element having transverse non-propagaine-edge open crack.

1.

2.

From convergence study it was noticed that, a nwsh4 elements shows good

convergence of natural frequencies of the cantileeam in free vibration.

Further this element is versatile and can be usedtatic and dynamic analysis of a
composite or isotropic beam.

From the vibration analysis it can be concludedt ttie natural frequencies of

vibration of a cracked composite beam are the fonstof the crack locations and

crack depths.

The presence of a transverse crack increases thehfiequencies of the composite
beam. On account of position, as the crack mowes the fixed end to the free end it
is found that initially the frequencies rise andalees maximum at an RCL of 0.6 and
further the frequency decreases.

. In the case of beam with uniform crack depth of @4 natural frequencies tend to

rise towards the free end of the beam and attemaxdmum value at an RCL of 0.9.
But in the case of beam with crack with crack offanmn crack depth of 0.6 the
natural frequency becomes maximum at RCL 0.4 aed ibis found to decrease
towards the free end of the beam.

In the case of uniform crack depths of 0.8 and h®, natural frequency tends to
decrease in the middle of the beam. The frequercehighest in the fixed as well as
the free end of the beam.

It is seen that the buckling loads (the load atclwtdeformation occurs) increases as
the crack moves to the free end. This means thheitrack is near to the fixed end it
becomes critical.

It is found that as the crack depths increase #heevof buckling loads also increases
and reaches a maximum and falls sharply. This atdecthat minor cracks and major
cracks equally aids the buckling phenomenon.

10.From the results it is found that the presence oltiple cracks near to the fixed end
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of the beam is more critical than the presenceufipte cracks near to the free end.
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NOMENCLATURE

The principal symbols used in this research papepeesented for easy reference. A symbol

is used for different meaning depending on theextrdand defined in the text as they occur.

NOTATION

IRF'2013

A
a

o

Em

Gy
Gm

DESCRIPTION
Cross-sectional area of the element
Crack depth
Angle of the fibre
Width of the composite beam
Linear displacement
Modulus of Elasticity of the Fibre Material
Modulus of Elasticity of the Matrix Material
Linear Strain
Modulus of Rigidity of the Fibre Material
Modulus of Rigidity of the Matrix Material
Height of the composite beam
Moment of inertia
Length of the composite beam
Crack location
Periodic axial force
Critical Buckling load
Vector
Mass Density of the beam
Mass density of the Fibre Material
Mass density of the Matrix material
Material property of the composite material
Poisson’s Ratio of the Fibre material
Poisson’s Ratio of the Matrix material
Natural frequency
Non-dimensional natural frequency

Disturbing frequency
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