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ABSTRACT 

Cracks or other defects in a structural element influence its dynamic behaviour and change its 
stiffness and damping properties. Consequently, the natural frequencies and mode shapes of 
the structure contain information about the location and dimensions of the damage. Vibration 
analysis can be used to detect structural defects, such as cracks, of any structure offer an 
effective, inexpensive and fast means of non destructive testing. Present work deals with the 
vibration and buckling analysis of a cantilever beam made from graphite fibre reinforced 
polyamide with a transverse one-edge non-propagating open crack using the finite element 
method. The effects of various parameters like crack location, crack depth, multiple cracks 
upon the changes of the natural frequencies of the beam are studied. Critical fracture 
parameters governing the severity of stress and deformation field ahead of the cracks were 
evaluated. To ensure the safe, reliable and operational life of structures, it is of high 
importance to know if their members are free of cracks and, should they be present, to assess 
their extent. So, the primary objective of Structural Health Monitoring is to detect a variety of 
damages at the earliest possible stage to prevent catastrophic failure. 

Keywords: Composite Materials, Crack detection, Damage Diagnosis, Vibration Analysis 

 

INTRODUCTION 

Preventing failure of composite material systems has been an important issue in engineering 
design. Composites are prone to damages like transverse cracking, fiber breakage, 
delamination, matrix cracking and fiber-matrix debonding when subjected to service 
conditions. The two types of physical failures that occur in composite structures and interact 
in complex manner are intralaminar and interlaminar failures. Interalaminar failure is 
manifested to micro-mechanical components of the lamina such as fiber breakage, matrix 
cracking, and debonding of the fiber- matrix interface. Generally, aircraft structures made of 
fiber reinforces composite materials are designed such that the fibers carry the bulk of the 
applied load. Interlaminar failure such as delamination refers to de-bonding of adjacent 
lamina. The possibility that interalaminar and interlaminar failure occur in structural 
components is considered a design limit, and establishes restrictions on the usage of full 
potential of composites. 

As one of the failure modes for the fiber-reinforced composites, crack initiation and 
propagation have long been an important topic in composite and fracture mechanics 
communities. During operation, all structures are subjected to degenerative effects that may 
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cause initiation of structural defects such as cracks which, as time progresses, lead to the 
catastrophic failure or breakdown of the structure. Thus, to ensure the safe, reliable and 
operational life of structures, it is of high importance to know if their members are free of 
cracks and, should they be present, to assess their extent. 

 

METHODOLOGY 

The basic configuration of the problem investigated here is a composite beam with a 
transverse one-edge non-propagating open crack. A typical cantilever composite beam 
structure has tremendous applications in aerospace structures and high-speed turbine 
machinery. 

The following aspects of the crack greatly influence the dynamic response of the structure. 
 

i. The position of a crack in a cracked composite beam 
ii.  The depth of crack in a cracked composite beam 
iii.  The number of cracks on the composite beam 
iv. The effect of cracks on buckling loads 

The assumptions made in the analysis are:  
 

i.  The analysis is linear. This implies constitutive relations in generalized Hook’s law for 
the materials are linear.  
ii.  The Euler–Bernoulli beam model is assumed.  
iii.  The damping has not been considered in this study.  
iv.  The crack is assumed to be an open crack and have a uniform width. 

 

GOVERNING EQUATION 
 

The governing equations for the vibration analysis of the composite beam with an open one-
edge transverse crack are developed. Here an additional flexibility matrix related to the crack 
is added to the normal flexibility matrix to obtain the total flexibility matrix of the 
corresponding composite beam element. 
 
The differential equation of the bending of a beam with a mid-plane symmetry (Bij = 0) so 
that there is no bending-stretching coupling and no transverse shear deformation (εxz=0) is 
given by; 
 

IS11
��ω

���
=q x           (1) 

 
It can easily be shown that under these conditions if the beam involves only a one layer, 
isotropic material, then, 

IS11 = EI =
����

�	
 

and for a beam of rectangular cross-section Poisson’s ratio effects are ignored in beam theory, 
which is in the line with (Gaith, 2011). 
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In Equation 1, it is seen that the imposed static load is written as a force per unit length. For 
dynamic loading, if Alembert’s Principle is used then one can add a term to Equation.1 equal 
to the product of mass and acceleration per unit length. In that case Equation.1 becomes 
 

IS11
��ω(�,�)

���
= q(x,t) - ρA

��ω(�,�)

���
        (2) 

        
where ω and q both become functions of time as well as space, and derivatives therefore 
become partial derivatives, ρ is the mass density of the beam material, and here A is the beam 
cross-sectional area. In the above, q(x, t) is now the spatially varying time-dependent forcing 
function causing the dynamic response, and could be anything from a harmonic oscillation to 
an intense one-time impact. 
 
For a composite beam in which different lamina have differing mass densities, then in the 
above equations use, for a beam of rectangular cross-section, 
 
ρA = ρbh =  ρb

���

� h� − h���         (3) 
 
However, natural frequencies for the beam occur as functions of the material properties and 
the geometry and hence are not affected by the forcing functions; therefore, for this study let 
q(x, t) be zero. 
 
Thus, the natural vibration equation of a mid-plane symmetrical composite beam is given by; 
 

IS11
��ω(�,�)

���
+ ρA

��ω(�,�)

���
 = 0         (4) 

 
It is handy to know the natural frequencies of beams for various practical boundary conditions 
in order to insure that no recurring forcing functions are close to any of the natural 
frequencies, because that would result almost certainly in a structural failure. In each case 
below, the natural frequency in radians/unit time are given as  
 

ω�=α2 ����

����

�	

           (5) 

 
Where α2 is the co-efficient, which value is catalogued by (Banerjee, 1996) and once   ωn is 
known then the natural frequency in cycles per second (Hertz) is given by fn = ωn/2π, which is 
in line with (Gaith, 2011). 
 
MATHEMATICAL MODEL 
 

The model chosen here for our analysis is a composite cantilever beam as shown in the figure-
1. It is of uniform cross-section A, having an open-edge transverse crack of depth ‘a’ at 
position ‘l1’. The width, length and height of the beam are B, L and H respectively. The angle 
between the fibers and the axis of the beam is ‘α’.  
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Fig 1: Schematic diagram of a composite cantilever 

beam with a crack 
Fig 2:   Geometry of the non-cracked composite 

cantilever beam with 12 elements 

 

RESULTS AND CONCLUSIONS 

The finite element solver namely ANSYS 10.0 is used to perform all the necessary 
computations. In the initialization phase, geometry and material parameters are specified. For 
example for a Euler–Bernoulli composite beam model with localized crack, material 
parameters like modulus of elasticity, the modulus of rigidity, the Poisson ratio and the mass 
density of the composite beam material along with geometric parameters like dimensions of 
the composite beam, also the specifications of the damage like size of the crack, location of 
the crack and extent of crack are supplied as input data into the preprocessor of the ANSYS 
10.0 software. The beam is descritized into n number of elements. The model is then solved to 
obtain the non-dimensional natural frequencies and buckling load for non-cracked and 
cracked composite beam element. 

 
Table 1. Material Properties of Composite Beam 

 
Modulus of Elasticity Em 2.756 GPa 

 Ef 275.6 GPa 
Modulus of Rigidity Gm 1.036 GPa 

 Gf 114.8GPa 
Poisson’s Ratio Vm 0.33 

 Vf 0.2 
Mass density ρm 1600 kg/m3 

 ρf 1900 kg/m3 
 

The results of vibration and buckling analysis of composite beam structure with or without 
crack were found out using the above given formulation. Each of the cracked composite beam 
problems are presented separately for the following studies:  

 

I. Convergence testing 

II.Vibration and Buckling analysis of beam with single crack 

III. Vibration and Buckling analysis of beam with multiple cracks 
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CONVERGENCE TESTING 
 
A fundamental premise of using the finite element procedure is that the body is sub-divided 
up into small discrete regions known as finite elements.It is necessary to conduct convergence 
tests on finite element model to confirm that a fine enough element discretization has been 
used. In this problem, this would be done by creating several models with different mesh sizes 
and comparing the resulting natural frequencies and mode shapes. 

 
Table 2. The results of natural frequencies for different mesh divisions 

 

Mesh 
Division 

First Natural 
frequency (Hz) 

Second Natural 
frequency(Hz) 

Third Natural 
frequency(Hz) 

2 0 24.225 25.005 
3 15.689 24.654 29.433 
4 13.684 24.531 25.387 
5 13.67 24.53 25.32 
6 13.55 24.44 25.311 
7 13.52 24.39 24.72 
8 13.519 22.378 24.413 
9 13.517 22.37 24.41 

10 13.512 22.368 24.4 
11 13.51 22.33 24.394 
12 13.495 22.277 24.392 
13 13.494 22.265 24.392 
14 13.493 22.265 24.392 

 

 

  
Fig 3: Geometric modeling of the cracked beam done 

in ANSYS 

Fig 4: Convergence plot indicating the Level of Mesh 
size versus Natural Frequency in Hertz 

 

VIBRATION ANALYSIS 
 
After carrying out the convergence study of the non-cracked beam various crack scenarios are 
simulated using the ANSYS 10.0 CAE software package. The results of the non-dimensional 
natural frequencies as a function of various crack locations are presented here. Initially the 
cracks are simulated for a uniform crack depth of 0.1 at various crack locations. The locations 
are indicated in terms of relative crack locations from the fixed end. The beam is made up of 
unidirectional graphite fiber reinforced polyamide composite material 
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The geometrical characteristics of the beam are taken as length = 1m, breadth = 0.050m and 
height = 0.025m respectively. The finite elements were taken as brick 8 Node 45. These were 
selected because, due to the presence of cracks, the beam will assume an irregular cross 
section. The material properties were as listed in Table-1. 

 
The crack locations and crack depths were varied to obtain the vibration characteristics of the 
beam. So, the variables are Relative crack location (RCL) and relative crack depths (RCD)  

 

RCL= 
��� !"#$!"�%�&'&!()&(*

+), ,�&-��� !"
 

RCD= 
.�/!"#$!"�()&(* (&)

1�, "!#$!"�%�&' (")
 

Six RCL values were taken by keeping each RCD constant. The various relative locations 
were taken at 0.1, 0.2, 0.4, 0.6, 0.8, and 0.9 respectively.  
 
 

Variation of Natural Frequencies on Account of Crack Locations 
 
In the first six runs the beam having a constant relative crack depth (RCD) = 0.1 is simulated 
at various locations (RCL), at 0.1, 0.2, 0.4, 0.6, 0.8, and 0.9 and were analyzed and the first, 
second and third Natural Frequencies were found out. This procedure is repeated for all the 
values RCD and correspondingly graphs were plotted. 
 
Table 3 List of natural frequencies at various crack 

locationsat RCD of 0.1 
Table 4 List of natural frequencies at various crack locations 

at RCD of 0.2 
 

RCL First Natural 
frequency(Hz) 

Second Natural 
frequency(Hz) 

Third Natural 
frequency(Hz) 

0.1 401.6 795.06 2495.9 
0.2 409.55 796.61 2521.5 
0.4 399.94 794.85 2532.2 
0.6 408.32 797.58 2584.5 
0.8 397.67 795.32 2488.6 
0.9 404.85 796.83 2520.4 

 

 

 

RCL First Natural 
frequency(Hz) 

Second Natural 
frequency(Hz) 

Third Natural 
frequency(Hz) 

0.1 400.15 793.45 2503.8 
0.2 398.52 793.93 2509.4 
0.4 397.8 793.91 2509.9 
0.6 401.07 796.13 2526.3 
0.8 398.88 796.52 2515.2 
0.9 397.88 795.13 2490.4 

 
 

Fig 5. Relative Crack location versus Natural frequencies 
at RCD = 0.1 

Fig 6. Relative Crack location versus Natural frequencies 
at RCD = 0.2 

Relative Crack location vs Natural frequencies at 
RCD = 0.1

0

500

1000

1500

2000

2500

3000

0.1 0.2 0.4 0.6 0.8 0.9

Relative Crack Locations

N
at

u
ra

l 
F

re
q

u
en

cy
 (

H
z)

First Natural
frequency

Second Natural
frequency

Third Natural
frequency

Relative crack Location vs Natural Frequency at 
RCD=0.2

0

500

1000

1500

2000

2500

3000

0.1 0.2 0.4 0.6 0.8 0.9

Relative Crack Location

N
at

u
ra

l 
fr

eq
u

en
cy

 (
H

z)

First Natural
frequency

Second Natural
frequency

Third Natural
frequency



Integrity, Reliability and Failure of Mechanical Systems 

IRF’2013  7

 
Table 5 List of natural frequencies at various crack locations 

at RCD of 0.4 
Table 6 List of Natural frequencies at various crack 

locationsat RCD of 0.6 
 

RCL First Natural 
frequency(Hz) 

Second Natural 
frequency(Hz) 

Third Natural 
frequency(Hz) 

0.1 395.12 786.49 2549.4 
0.2 397.13 789.95 2615.6 
0.4 404.39 796.61 2686.4 
0.6 400.68 799.95 2578.7 
0.8 445.57 826.46 3144.3 
0.9 766.35 1327.1 4669.7 

 

 

RCL First Natural 
frequency(Hz) 

Second Natural 
frequency(Hz) 

Third Natural 
frequency (Hz) 

0.1 335.33 773.14 2453.7 
0.2 540.84 1077.2 3407.7 
0.4 706.89 1173.2 4468.7 
0.6 715.4 1211.3 4243.8 
0.8 684.96 1301.1 4317 
0.9 632.31 1138.6 3979.2 

 
Fig7. Relative Crack location versus natural frequencies 

at RCD = 0.4 
Fig8. Relative Crack location versus natural frequencies 

at RCD = 0.6 
 

Table 7 List of Natural frequencies at various crack locations  
at RCD of 0.8 

Table 8 List of Natural frequencies at various crack locations  
at RCD of 0.9 

RCL First Natural 
frequency (Hz) 

Second Natural 
frequency (Hz) 

Third Natural 
frequency (Hz) 

0.1 467.39 1120.9 4637.6 
0.2 506.32 976.87 4606 
0.4 645.8 1121.4 3861.9 
0.6 741.93 1247.3 3485.1 
0.8 801.49 1308.1 4202.4 
0.9 828.89 1348.3 4947 

 

 

RCL First Natural 
frequency (Hz) 

Second Natural 
frequency (Hz) 

Third Natural 
frequency (Hz) 

0.1 325.72 969.49 4096.1 
0.2 356 933.57 4439.1 
0.4 656.88 1096.4 3899 
0.6 721.8 1229.1 3572.3 
0.8 808.43 1235.5 4421.8 
0.9 808.49 1285.5 4892.9 

 

 

 
 

Fig 9. Relative Crack location versusNatural frequencies 
at RCD = 0.8 

Fig 10. Relative crack location versus natural 
frequencies at RCD = 0.9 
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Variation of Natural Frequencies on Account of Crack depths 
 

 
By rearranging the above results we can find the vibration characteristics of the beam 
(Variation of natural frequencies) at a specific location For example, In the first six runs the 
beam is having a crack at location 0.1 (constant RCL=0.1) However the depth of the crack 
varies from 0.1 to 0.9. This crack growth is analyzed and the following results were noted. 
 
 

Table 9 List of natural frequencies at various crack depths 
at RCL of 0.1 

Table 10 List of natural frequencies at various crack depthsat 
RCL of 0.2 

 

RCD First Natural 
frequency (Hz) 

Second Natural 
frequency(Hz) 

Third Natural 
frequency(Hz) 

0.1 401.6 795.06 2495.9 
0.2 400.15 793.45 2503.8 
0.4 395.12 786.49 2549.4 
0.6 335.33 773.14 2453.7 
0.8 467.39 1120.9 4637.6 
0.9 325.72 969.49 4096.1 

 

 

RCD First Natural 
frequency (Hz) 

Second Natural 
frequency (Hz) 

Third Natural 
frequency (Hz) 

0.1 409.55 796.61 2521.5 
0.2 398.52 793.93 2509.4 
0.4 397.13 789.95 2615.6 
0.6 540.84 1077.2 3407.7 
0.8 506.32 976.87 4606 
0.9 356 933.57 4439.1 

 

 
 

 
 
 
Fig 11.  Relative crack depthsversus Natural frequencies 

at RCL = 0.1 
Fig 12. Relative crack depths versus Natural frequencies 

at RCL = 0.2 
 
 
 
 

Table 11 List of natural frequencies at various crack depthsat 
RCL of 0.4 

Table 12 List of natural frequencies at various crack depthsat 
RCL of 0.6 

 

RCD First Natural 
frequency (Hz) 

Second Natural 
frequency(Hz) 

Third Natural 
frequency(Hz) 

0.1 399.94 794.85 2532.2 
0.2 397.8 793.91 2509.9 
0.4 404.39 796.61 2686.4 
0.6 706.89 1173.2 4468.7 
0.8 645.8 1121.4 3861.9 
0.9 656.88 1096.4 3899 

 

RCD First Natural 
frequency (Hz) 

Second Natural 
frequency(Hz) 

Third Natural 
frequency(Hz) 

0.1 408.32 797.58 2584.5 
0.2 401.07 796.13 2526.3 
0.4 400.68 799.95 2578.7 
0.6 715.4 1211.3 4243.8 
0.8 741.93 1247.3 3485.1 
0.9 721.8 1229.1 3572.3 
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Fig 13. Relative crack depths versusnatural frequencies 

at RCL = 0.4 
Fig 14. Relative Crack depths versus natural frequencies 

at RCL = 0.6 
 

Table 13 List of natural frequencies at various crack depthsat 
RCL of 0.6 

Table 14 List of natural frequencies at various crack depthsat 
RCL of 0.9 

RCD First Natural 
frequency (Hz) 

Second Natural 
frequency(Hz) 

Third Natural 
frequency(Hz) 

0.1 408.32 797.58 2584.5 
0.2 401.07 796.13 2526.3 
0.4 400.68 799.95 2578.7 
0.6 715.4 1211.3 4243.8 
0.8 741.93 1247.3 3485.1 
0.9 721.8 1229.1 3572.3 

 

 

RCD First Natural 
frequency(Hz) 

Second Natural 
frequency(Hz) 

Third Natural 
frequency(Hz) 

0.1 404.85 796.83 2520.4 
0.2 397.88 795.13 2490.4 
0.4 766.35 1327.1 4669.7 
0.6 632.31 1138.6 3979.2 
0.8 828.89 1348.3 4947 
0.9 808.49 1285.5 4892.9 

 

 

 
 
Fig 15. Relative Crack depth versus natural frequencies 

at RCL = 0.8 
Fig 16. Relative crack depth versus natural frequencies 

at RCL = 0.9 
 

 

BUCKLING ANALYSIS 
 
Buckling loads are critical loads where certain types of structures become unstable. Each load 
has an associated buckled mode shape; this is the shape that the structure assumes in a 
buckled condition. There are two primary means to perform a buckling analysis. 
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Eigen value buckling analysis predicts the theoretical buckling strength of an ideal elastic 
structure. It computes the structural Eigen values for the given system loading and constraints. 
This is known as classical Euler buckling analysis. Buckling loads for several configurations 
are readily available from tabulated solutions. However, in real-life, structural imperfections 
and nonlinearities prevent most real world structures from reaching their Eigen value 
predicted buckling strength; i.e. it over-predicts the expected buckling loads. 

 
Nonlinear buckling analysis is more accurate than Eigen value analysis because it employs 
non-linear, large-deflection; static analysis to predict buckling loads. Its mode of operation is 
very simple: it gradually increases the applied load until a load level is found whereby the 
structure becomes unstable (i.e. suddenly a very small increase in the load will cause very 
large deflections). The true non-linear nature of this analysis thus permits the modeling of 
geometric imperfections, load perturbations, material nonlinearities and gaps. For this type of 
analysis, small off-axis loads are necessary to initiate the desired buckling mode. 

 
 
Variation of Buckling loads on account of crack locations 
 
 

The result of the buckling analysis is as follows. The variation of buckling loads on account 
of crack locations as well as on account of crack depths is obtained. 
 
 
Table 15 List of non-dimensional buckling loads for 

various crack locations at relative crack depths of 0.1, 
0.2 and 0.4 

Table 16 List of non-dimensional buckling loads for 
various crack locations at relative crack depths of 0.6, 0.8 

and 0.9 
 

RCL RCD= 0.1 RCD=0.2 RCD=0.4 
0.1 6872.8 10454 10418 
0.2 6954.8 10418 10440 
0.4 6851.1 8256.7 10598 
0.6 6892 8444.5 10605 
0.8 6837.7 10464 12149 
0.9 6920.8 10442 15160 

 

 
RCL RCD=0.6 RCD=0.8 RCD=0.9 
0.1 10399 33495 12950 
0.2 14735 31323 14903 
0.4 10573 35002 41137 
0.6 50817 55745 44749 
0.8 60894 66656 61164 
0.9 76142 81688 61180 

 

 

 
 
Fig 17. Relative crack locations versus non dimensional  

buckling loads at relative crack depths  
of 0.1, 0.2 and 0.4 

Fig 18. Relative crack locations versus non dimensional 
Buckling loads at relative crack depths  

of 0.6, 0.8 and 0.9 
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The results are tabulated in separate tables and plotted separately as it would rather be 
difficult to express in a single graph. So buckling load values for RCD 0.1, 0.2 and 0.4 are 
plotted in the first graph and the remaining RCD values i.e.  0.6, 0.8and 0.9 are plotted in the 
second graph. 
The graphs basically indicate the relationship between the crack parameters and the buckling 
loads. The figures 19 and 20 show the variation of the bucklin
locations. This has been simulated for uniform crack depths of 0.1, 0.2 and 0.4. Similarly in 
the second graph buckling loads are plotted with respect to the crack locations at uniform 
crack depths of 0.6, 0.8 and 0.9.
It is seen that the buckling loads (the load at which deformation occurs) increases as the crack 
moves to the free end. This means that if the crack is near to the fixed end it becomes critical. 
i.e., the structure fails at low buckling loads.
 
Thus the location of the crack is critical in the variation of buckling loads. In other words the 
value of buckling loads is instrumental in determining the location or position of cracks in the 
structure 
 
Variation of Buckling loads on account of crack growth

 
Similar to the previous section, the results are tabulated in separate tables and plotted 
separately as it would rather be difficult to express in a single graph. So buckling load values 
for RCL 0.1, 0.2 and 0.4 are plotted in the first graph and the remaining RCL
0.8and 0.9 are plotted in the second graph. 

 
Table 17 List of non-dimensional buckling loads for 

various crack depths at relative crack locations 0.1, 0.2 
and 0.4 

 
RCD RCL=0.1 RCL=0.2
0.1 6872.8 6954.8
0.2 10454 10418 
0.4 10418 10440 
0.6 10399 14735 
0.8 33495 31323 
0.9 12950 14903 

 

 

 
     Fig 19. Relative Crack depths versus non 

buckling loads at relative crack locations
of 0.1, 0.2 and 0.4
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The results are tabulated in separate tables and plotted separately as it would rather be 
difficult to express in a single graph. So buckling load values for RCD 0.1, 0.2 and 0.4 are 

the first graph and the remaining RCD values i.e.  0.6, 0.8and 0.9 are plotted in the 

The graphs basically indicate the relationship between the crack parameters and the buckling 
show the variation of the buckling loads with respect to the crack 

locations. This has been simulated for uniform crack depths of 0.1, 0.2 and 0.4. Similarly in 
the second graph buckling loads are plotted with respect to the crack locations at uniform 
crack depths of 0.6, 0.8 and 0.9. 

is seen that the buckling loads (the load at which deformation occurs) increases as the crack 
moves to the free end. This means that if the crack is near to the fixed end it becomes critical. 
i.e., the structure fails at low buckling loads. 

ion of the crack is critical in the variation of buckling loads. In other words the 
value of buckling loads is instrumental in determining the location or position of cracks in the 

Variation of Buckling loads on account of crack growth 

to the previous section, the results are tabulated in separate tables and plotted 
separately as it would rather be difficult to express in a single graph. So buckling load values 
for RCL 0.1, 0.2 and 0.4 are plotted in the first graph and the remaining RCL
0.8and 0.9 are plotted in the second graph.  

dimensional buckling loads for 
various crack depths at relative crack locations 0.1, 0.2 

Table 18 List of non-dimensional buckling loads for 
various crack depths at relative crack locations 0.6, 

0.8and 0.9

RCL=0.2 RCL=0.4 
6954.8 6851.1 

 8256.7 
 10598 
 10573 
 35002 
 41137 

 
RCD RCL=0.6 RCL=0.8
0.1 6892 6837.7
0.2 8444.5 10464
0.4 10605 12149
0.6 50817 60894
0.8 55745 66656
0.9 44749 61164

 

 

. Relative Crack depths versus non dimensional 
relative crack locations 

of 0.1, 0.2 and 0.4 

Fig 20. Relative crack depths versus non dimensional 
buckling loads at relative crack locations 

of 0.6, 0.8 and 0.9
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The results are tabulated in separate tables and plotted separately as it would rather be 
difficult to express in a single graph. So buckling load values for RCD 0.1, 0.2 and 0.4 are 

the first graph and the remaining RCD values i.e.  0.6, 0.8and 0.9 are plotted in the 

The graphs basically indicate the relationship between the crack parameters and the buckling 
g loads with respect to the crack 

locations. This has been simulated for uniform crack depths of 0.1, 0.2 and 0.4. Similarly in 
the second graph buckling loads are plotted with respect to the crack locations at uniform 

is seen that the buckling loads (the load at which deformation occurs) increases as the crack 
moves to the free end. This means that if the crack is near to the fixed end it becomes critical. 

ion of the crack is critical in the variation of buckling loads. In other words the 
value of buckling loads is instrumental in determining the location or position of cracks in the 

to the previous section, the results are tabulated in separate tables and plotted 
separately as it would rather be difficult to express in a single graph. So buckling load values 
for RCL 0.1, 0.2 and 0.4 are plotted in the first graph and the remaining RCL values i.e.  0.6, 

dimensional buckling loads for 
various crack depths at relative crack locations 0.6, 

0.8and 0.9 

RCL=0.8 RCL=0.9 
6837.7 6920.8 
10464 10442 
12149 15160 
60894 76142 
66656 81688 
61164 61180 

. Relative crack depths versus non dimensional 
relative crack locations  

of 0.6, 0.8 and 0.9 

Variation of Buckling loads with Crack Depths
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Relative Crack Depths
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Now the variation of buckling loads with respect to the crack growth is described here. Crack 
growth essentially means the variation or increase in the relative crack depths of the beam. In 
this case the RCL is kept constant for a set and depths are varied to find out the buckling 
loads. It is found that as the crack depths increase the value of buckling loads also increases 
and reaches a maximum and falls sharply. This indicates that minor cracks and major cracks 
equally aid the buckling phenomenon and they both are equally dangerous. If the specimen 
initially crosses the failure zone then it would withstand further depth. But as the crack 
growth continues abrupt failure was noticed 

 

EFFECT OF MULTIPLE CRACKS ON THE BEAM 
 
In this section the effect of multiple cracks on the cantilever beam is being studied. Here only 
three cracks are taken at a time for analysis. In the first part the effect of crack formation 
nearer to the fixed end is studied and in the next part crack formation at the free end is 
studied. It is found that there is a notable change in the frequency. The extent and nature of 
change will help us to identify the number of cracks and the possible concentration area of the 
cracks on the beam. In the first part the cracks are simulated at relative locations 0.1, 0.2 and 
0.4 near to the fixed end and in the second part the cracks are simulated at locations 0.6, 0.8 
and 0.9 near to the free end.  

 
Vibration Analysis of the Beam with Multiple cracks 
 

The procedure for vibration analysis is same as that of the analysis done on a beam with 
single crack. Here the mode shapes associated with each natural frequency were also found 
out. The beams with multiple cracks near to the fixed end and the beam with multiple cracks 
near to the free ends were analyzed separately. The mode shape diagrams along with the 
variation of natural frequency provide a strong signature of the crack found on the beam.  
The figure 23 shows the geometry of the beam with the cracks at locations 0.1, 0.2 and 0.3. 
When it undergoes vibration analysis their mode shapes gets extracted. The mode shape 
shows the displacement of the beam from the mean position with respect to time when it 
undergoes free vibration. The cracks simulated are of uniform depth of 0.6 RCD at locations 
close to each other. By this analysis we will be able to identify how the presence of multiple 
cracks will alter the dynamic characteristics of the beam. 
 
 
Table 19 First, Second & Third natural frequencies of the beam 

with multiple cracks obtained from vibration analysis 
Table 20 Non dimensional buckling loads of 
the beam with multiple cracks obtained from 

Eigen Buckling Analysis 
 

Location 
of the Cracks 

First Natural 
frequency(Hz) 

Second Natural 
frequency(Hz) 

Third Natural 
frequency(Hz) 

Fixed end 412.27 783.85 2694.6 

Free End 416.85 812.4 2727.5 
 
 

 
Location of the 

Cracks 
Non Dimensional  
Buckling Loads 

Cracks at Fixed end 8530 
Cracks at Free End 8798.9 
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Fig 21. Bar chart showing the rise of natural frequency 
when the concentration of the crack  

is near to the free end 

     Fig 22. Bar chart showing the changes in buckling 
Loadswhen the concentration of the crack  

is near to the free end. 
 

The results can be fed into a microprocessor and can be stored s a reference for comparison. 
Once the real time data, from the sensor, matches with the reference data, the crack or flaw 
will be detected. 

 

From the graphs it is found that as the beams tend to exhibit a higher natural frequency if their 
concentration is nearer to the free end. It is applicable to the cases of First, Second and Third 
frequencies. But the rate of increase is higher for the third frequency compared to the first 
frequency. Moreover to gets an overall idea of the fracture modes it is important to simulate 
all crack scenarios. Future work is very much required as the scope of this work is limited to 
multiple cracks with uniform depth only. In addition to this simulation may be performed 
with cracks with varying densities on the beam. 
 

Buckling Analysis of the Beam with Multiple cracks 
 

Eigen value buckling analysis was performed in the beam with multiple cracks. The 
procedure being the same as adopted in the beam with a single crack. But this was done in 
two parts. In the first part the beam with multiple cracks near to the fixed end was analyzed 
and in the second part the beam with multiple cracks near to the free end was done. The 
results are as follows 

 
Figure 23. Deformed shape of the beam with multiple  

cracks after Eigen value buckling analysis when the cracks 
near to the fixed end 

Figure 24. Deformed shape of the beam with multiple 
cracks after Eigen value buckling analysis when the cracks 

near to the free end 

Variation of Natural Frequencies due to multiple cracks at the fixed and 
free ends
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From the results it is found that the presence of multiple cracks near to the fixed end of the 
beam is more critical than the presence of multiple cracks near to the free end. Also the mode 
shape diagram is another signature which can be used for comparing the characteristics of the 
beam to the standard non cracked one. The buckling mode shapes are as given in the figure 23 
and 24.  Thus the variation of buckling load and the mode shape diagram gives us a clear 
picture of the location and size of the crack that too without any disadvantages faced in the 
conventional non-destructive evaluation methods. 

CONCLUSION 

 
The following conclusions can be made from the present investigations of the composite 
beam finite element having transverse non-propagating one-edge open crack.  
 

1. From convergence study it was noticed that, a mesh of 14 elements shows good 
convergence of natural frequencies of the cantilever beam in free vibration.  

2. Further this element is versatile and can be used for static and dynamic analysis of a 
composite or isotropic beam. 

3. From the vibration analysis it can be concluded that the natural frequencies of 
vibration of a cracked composite beam are the functions of the crack locations and 
crack depths.  

4. The presence of a transverse crack increases the natural frequencies of the composite 
beam. On account of position, as the crack moves from the fixed end to the free end it 
is found that initially the frequencies rise and reaches maximum at an RCL of 0.6 and 
further the frequency decreases. 

5. In the case of beam with uniform crack depth of 0.4, the natural frequencies tend to 
rise towards the free end of the beam and attain a maximum value at an RCL of 0.9. 

6. But in the case of beam with crack with crack of uniform crack depth of 0.6 the 
natural frequency becomes maximum at RCL 0.4 and then it is found to decrease 
towards the free end of the beam. 

7. In the case of uniform crack depths of 0.8 and 0.9, the natural frequency tends to 
decrease in the middle of the beam. The frequencies are highest in the fixed as well as 
the free end of the beam. 

8. It is seen that the buckling loads (the load at which deformation occurs) increases as 
the crack moves to the free end. This means that if the crack is near to the fixed end it 
becomes critical. 

9. It is found that as the crack depths increase the value of buckling loads also increases 
and reaches a maximum and falls sharply. This indicates that minor cracks and major 
cracks equally aids the buckling phenomenon. 

10. From the results it is found that the presence of multiple cracks near to the fixed end 
of the beam is more critical than the presence of multiple cracks near to the free end. 

 

 

 

 

 

 



Integrity, Reliability and Failure of Mechanical Systems 

IRF’2013  15

NOMENCLATURE 

 

The principal symbols used in this research paper are presented for easy reference. A symbol 

is used for different meaning depending on the context and defined in the text as they occur.  

 

NOTATION DESCRIPTION 

A Cross-sectional area of the element 

a Crack depth 

α Angle of the fibre 

B Width of the composite beam 

δ Linear displacement 

Ef Modulus of Elasticity of the  Fibre Material 

Em Modulus of Elasticity of the  Matrix Material 

ε Linear Strain 

Gf Modulus of Rigidity of the  Fibre Material 

Gm Modulus of Rigidity of the  Matrix Material 

H Height of the composite beam 

I Moment of inertia 

L Length of the composite beam 

l1 Crack location 

P(t) Periodic axial force 

Pcr Critical Buckling load 

q Vector 

ρ Mass Density of the beam 

ρf Mass density of the Fibre Material 

ρm Mass density of the Matrix material 

S11 Material property of the composite material 

Vf Poisson’s Ratio of the Fibre material 

Vm Poisson’s Ratio of the Matrix material  

ω Natural frequency 

ωn Non-dimensional natural frequency 

Ω Disturbing frequency 
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