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ABSTRACT 

This paper demonstrates the difficulties in the modal approach to soil-structure interaction 
(SSI) analysis caused by heterogeneous damping in the platform soil-structure model (one 
damping in the structure, another one – in the “soil dashpots”). In such a system modal 
responses do not part (i.e., remain coupled in the generalized coordinates through the off-
diagonal terms of damping matrix), so the conventional modal approach gives wrong results. 
The attempt to compensate missing off-diagonal damping terms by the additional cut-down of 
the remaining diagonal terms of damping matrix in the generalized coordinates also gives 
poor results. The author proposes to use combined asymptotic method (CAM) to return to the 
homogeneous damping in the system and thus enable modal approach.  

Keywords: soil-structure interaction, impedance approach, modal analysis. 

 

INTRODUCTION 

Soil-structure interaction (SSI) controls structural seismic response in different situations - not 
only for heavy structures like NPP reactor buildings, but also for embedded structures, for 
structures on piles, etc. (Wolf, 1985; ASCE4-98). 

The key attribute of soil in SSI is wave propagation: wave effects change the effective 
dynamic stiffness of soil foundation towards basement, including effective damping. Wave 
damping (i.e. wave propagation from the moving basement, taking energy away) is added to 
the conventional internal damping in the soil medium, but can be far greater in scale.  

The simplest approach to SSI is the so-called “impedance approach” assuming the rigidity of 

the basement. The resulting model of SSI system is a structural model with rigid basement, 
placed on a rigid platform via the so-called “soil springs and dashpots”. Seismic excitation is 

usually applied to the platform as a kinematical excitation. 

Generally “soil springs and dashpots” compose in the frequency domain a frequency-
dependent complex dynamic stiffness matrix 6 x 6. However, very often they simplify this 
matrix, leaving only diagonal complex terms and making them as simple as possible – with 
frequency-independent real parts and frequency-proportional imaginary parts, corresponding 
to six pairs of “soil springs and dashpots” in SSI mechanical model. Such a simplification can 
be sometimes justified for homogeneous soil half-space. 

However, even for such a simple model the dynamic analysis is not obvious. Direct 
integration meets no difficulties with viscous dashpots; however, structural damping needs 
special consideration, and the most popular Rayleigh approach often leads to the excessive 
conservatism. 
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Common alternative to direct integration is modal approach. First, it often helps to save 
computational resources, especially with very detailed models common nowadays. Second, 
modal approach is the base for spectral method of seismic structural analysis, widely used in 
standards.  

However, conventional modal approach has important limitations, not always understood by 
engineers. The goal of the paper is to discuss some of these limitations and proposals how to 
keep modal approach valid even for soil-structure models. 

 

LIMITATIONS OF CONVENTIONAL MODAL APPROACH 

Let us start with well-known definition of the modal approach. Basic equation for the seismic 
analysis of linear system resting on the moving rigid platform is for one-component excitation 
as follows (e.g., see ASCE4-98) 

           
gg uUMXKXCXM                                                                                 (1) 

where 

[M] = mass matrix (n x n); 

[C] = damping matrix (n x n); 

[K] = stiffness matrix (n x n); 

{X} = column vector of relative displacements (n x 1); 

}{X  = column vector of relative velocities (n x 1); 

}{X  = column vector of relative accelerations (n x 1); 

{Ug} = column vector of influence; vector of nodal “rigid” displacements due to the static unit 
platform displacement in the direction of seismic excitation (n x 1); 

n = number of dynamic degrees of freedom; 

gu  = platform acceleration in the selected direction of excitation. 

Modal superposition is described by  

    X Y                                                                                                                          (2) 

where 

[] = is a mode matrix of size (n x m); comments are given below;  
{Y} = vector of relative displacement in generalized coordinates (m x 1); 

m = number of modes considered. 

Natural modes [Ф] have two valuable special properties. First of all, different modes (i.e. 
columns of [Ф]) are “orthogonal by masses”, enabling convenient scaling to unit matrix E 
(the so-called “normalization by masses”) 

EMT  ][][][                                                                                                                   (3) 

Besides, different modes are also “orthogonal by stiffness”; as normalization (3) has been 

already performed, the resulting matrix in the right-hand part of the analogue of (3) will be 
non-unit, but carrying natural frequencies ωj

2  (j=1,…,m) instead: 
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][][][][ 2

j

T diagK                                                                                                         (4) 

Putting (2) into (1) and multiplying (1) by [Ф]T from the left, one comes to the equation of 
motion in generalized coordinates: 

         gg

TTTT uUMYKYCYM  ][]][[][]][[][]][[][                               (5) 

Putting (3) and (4) into (5) we come to 

         gg

T

j

T uUMYdiagYCY  ][][]][[][ 2                                                         (6) 

Different equations in the system (6) are coupled only through the off-diagonal terms of the 
second matrix [Ф]T[C][Ф] in the left-hand part. If these off-diagonal terms are comparatively 
small and may be neglected, (6) leads to the well-known set of independent 1D equations of 
motion 
  Y Y Y uj j j j j j j g   2 2                                                                                                    (7) 

where  

Yj = scalar “modal coordinate j”; 

j = modal damping coefficient j, as part of critical damping; 

j = natural frequency j (rad/s); 

j = modal participation factor j, equal to 

    
    

    
g

T

j

j

T

j

g

T

j

j UM
M

UM





                                                                                   (8) 

These are briefly the fundamentals of conventional modal approach. 1D equations (7) are 
convenient to solve; spectral method is based on that.  

One can note the principal limitation: to keep modal approach applicable damping matrix [С] 
must provide small off-diagonal terms in the generalized coordinates. 

For homogeneous systems (e.g., made fully of steel or fully of reinforced concrete) damping 
is an attribute of material, thus linked to stiffness. In the frequency domain this fact is 
modeled by the addition of imaginary part to the material elasticity module leading to 
complex natural frequencies in (4) but with the same “undamped” natural modes. Off-
diagonal terms of damping matrix in the generalized coordinates remain zeroes, so responses 
along different modes remain uncoupled. However, material damping is not viscous, i.e. force 
is not proportional to the velocity as in (1). Hence, it is not directly applicable in the time 
domain. 

In the time domain with viscous damping we can also link damping matrix [C] to stiffness 
matrix [K] and get uncoupled modal responses, but then according to (4) and (7) modal 
damping coefficient j appears to be proportional to natural frequency j. However, 
experiments show that for homogeneous systems modal damping coefficients j are similar, 
i.e. do not depend on j.  
Such a similarity may be achieved in analysis via several options. The simplest option is just 
to forget about matrix [C] and to use modal equations (7), directly setting up similar j 
depending only on material (and sometimes on the intensity of excitation also). Such option is 
proposed, for example, by ASCE4-98.  
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If we still need matrix [C] for some purpose, another common option is to use Rayleigh 
model  

][][][ KMC                                                                                                              (9) 

Due to (3) and (4) we get with (9) the uncoupled modal responses, though modal damping 
coefficients are not similar (i.e. they depend on j): 

22

j

j

j






                                                                                                                (10) 

Adjusting α and β in (9, 10) one can achieve “target values” of damping coefficient j at two 
particular frequencies ωj. Common approach in seismic analysis is to set up two frequencies 
limiting “frequency domain of seismic response” (e.g., 3 Hz and 20 Hz) and require that for 
these frequencies formula (10) gives damping values prescribed by material, as mentioned 
above. Then for all natural frequencies between the prescribed two ones formula (10) will 
give conservative (i.e., less than prescribed) modal damping coefficients. Note that this more 
or less satisfactory result is achieved by non-physical tool: the first term in (9) (the so-called 
“external damping”) unlike the second term has no physical meaning. This is a pure 
mathematics. 

Now let us turn to the non-homogeneous systems, composed of several different 
homogeneous subsystems. Matrix [C] for such system must be composed of matrices [C] for 
subsystems in the same way as matrices [M] and [K]. However, this can break the uncoupling 
of the modal responses. Let us illustrate this effect using a very simple sample 1D model with 
3 DOFs shown (without damping) in Fig.1. 

 

 
 

Fig.1. Sample 1D model shown without damping 

 

Parameters of the model are given in the Table 1 together with natural frequencies and natural 
modes of the fixed-base system. 
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Table 1. Parameters of the sample model and natural frequencies/modes of the fixed-base SSI system 
Number 

from 
below 

Mass, 
tones 

Stiffness 
of springs, 

kN/m 

Natural 
frequencies, 

Hz 

Modal 
displacement 
of the lower 
mass, t-1/2 

Modal 
displacement 
of the middle 

mass, t-1/2 

Modal 
displacement 
of the upper 
mass, t-1/2 

1 1 1.3E3 3.0025 0.4703 0.6069 0.6407 
2 1 3.25E3 11.297 0.8535 -0.1281 -0.5051 
3 1 6.75E3 20.073 -0.2245 0.7844 -0.5782 

 
Natural frequencies in Table 1 are typical for SSI models of the NPP reactor buildings in 
vertical direction. Let the lower spring in Fig.1 represent “soil stiffness” and let other two 

springs together with three masses represent structure. Then we can use formula from 
ASCE4-98 linking coefficient of viscosity cz for soil dashpot to the coefficient kz of soil 
stiffness 

szz Vrkc /85,0/                                                                                                                (11) 

Here r is equivalent radius of the base mat, Vs is shear wave velocity in the soil. For further 
calculations r=40 m, Vs=400 m/s, so soil viscosity coefficient in kN/(m/s) is 

5,110400/4085,0103,1)/85,0( 3  szz Vrkc                                                    (12) 

Viscosity coefficient cz should be directly added to the term (1,1) of matrix [C]. 

Let us model structural portion of damping using Rayleigh approach with two boundary 
frequencies fb=3 Hz and fe =20 Hz. Let us take “target” value of damping λ=0.05. Then 
Rayleigh coefficients are calculated as 

1639,14 


 s
ff

ff

eb

eb
                                

s
ff eb

41091978,6
)(

1 





                                                                                 (13) 

Structural part [Cstr] of damping matrix [C] is given by (9): 











































 

33

333

33

4

1075,61075,60

1075,6100,101025,3

01025,31025,3

1091978,6

100

010

001

639,1][ strC  

























3099,66709,40

6709,45588,82489,2

02489,28879,3

                                                                                  (14) 

After the addition of the soil viscosity coefficient (12) we get full damping matrix 

























3099,66709,40

6709,45588,82489,2

02489,23879,114

][C                                                                            (15) 

Let us transfer it to the generalized coordinates using matrix of modes taken from Table 1: 
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























5782,05051,06407,0

7844,01281,06069,0

2245,08535,04703,0

][                                                                                 (16) 

In generalized coordinates we get 

























170,18001,21572,11

001,21965,84994,43

572,11994,43127,26

][][][ CT                                                                  (17) 

Conventional modal approach requires neglecting the off-diagonal terms of this matrix. Let us 
estimate the error arising from using this approach via the comparison of transfer functions 
{TF} from 1D platform motion to the absolute displacements of masses in Fig.1:  















 

 

0

0]}[][][{}{ 12

zz cik

KCiMTF



                                                              (18) 

In (14) we shall change matrix [C] and look at the absolute values of the results (18). The 
most “physical” curve is that for material damping, where iω[Cstr ] is replaced in (18) by 
2iλ[K] and soil viscosity term in the frequency domain iωcz is added to the term (1,1) of 
matrix iω[C].  

Another curve will be with “Rayleigh structure and viscous soil” damping using (15).  

The third variant will be conventional “modal full” damping where instead of (18) the 
following formulae are used: 

1222 ][},{][]111[}{  jjjj

T ciYYTF                                            (19) 

Here modal damping parameters cj are taken from the diagonal of matrix (17). According to 
(7) they correspond to the following dimensionless parameters λj=cj/(2ωj): λ1=0,6925; 
λ2=0,5985; λ3=0,0720. We see that the first two coefficients are far greater than “material” 

values of λ, usually making 4%...7%. This is typical for soil-structure interaction, where 
“wave” damping dominates over “material” one. 

The fourth curve is called “cut-down modal damping”. It was obtained in the similar way as 
the previous curve, but in (19) values of cj (j=1,2) were artificially cut down to 0.4ωj 
(corresponding to λ1=λ2=0,2); c3 and λ3 stay the same as before. Some specialists still believe 
that such cutting down can provide necessary conservatism. The results will be discussed 
below. 

The results for the lower mass are shown in Fig.2; the results for the middle mass – in Fig.3, 
the results for the upper mass – in Fig.4. 

First of all we see that the “Rayleigh damping” results are very close to the “material 

damping” results. Some difference can be seen, but it is small. The reason is that soil damping 

is represented in full in both variants, and it is more important in our case than structural 
damping. 

The “modal damping” results are satisfactory only for low frequencies. For upper frequencies 

they are considerably non-conservative. 
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Absolute Values of Transfer Functions From Platform to Lower Mass
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Fig.2. Absolute values of transfer functions from platform to the lower mass 

 

 
Absolute Values of Transfer Functions From Platform to Middle Mass

0,0

0,5

1,0

1,5

2,0

2,5

3,0

0 5 10 15 20 25 30

Frequency,  Hz

Material Structure+Viscous Soil

Modal Cut-Down

Modal Full

Rayleigh Structure+Viscous Soil

 
Fig.3. Absolute values of transfer functions from platform to the middle mass 
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Absolute Values of Transfer Functions From Platform to Upper Mass
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Fig.4. Absolute values of transfer functions from platform to the upper mass 

The “cut down damping” results corresponding to the “limit” modal damping coefficient 

λlim=0.2, are also inappropriate: they are too conservative around the first peaks, but non-
conservative for higher frequencies. 

So, we see that for SSI platform models with heterogeneous damping the conventional modal 
approach gives non-conservative results. This is in line with the comments in ASCE4-98. The 
attempts to save conservatism by means of cutting down modal damping coefficients to “limit 

value” of 0.2 lead to excessive conservatism in lower frequency range and non-conservative 
results for the high frequencies. 

 

3. COMBINED ASYMPTOTIC METHOD 

Combined asymptotic method (CAM) was developed by the author some time ago (Tyapin, 
2010; Tyapin, 2012). It is called “combined” because it combines frequency-domain and 
time-domain calculations. It is called “asymptotic” because the results are rigorous for rigid 
basements (surface and embedded ones) resting on flexible soil foundations, and they are 
approximate for flexible basements.  

The first principal step of CAM is the evaluation of the so-called “dynamic inertia” of the 

upper structure resting on a rigid basement. It is a complex frequency-dependent matrix 6 x 6 
linking basement motion {Ub} in the frequency domain (different from platform motion 
{Ug}!) to the forces {R} acting from the structure to the base: 

)}({)]([)}({ 2  bUMR                                                                                             (20) 

If the upper structure is completely rigid, “dynamic inertia” matrix [M(ω)] is similar to 
conventional “static inertia” matrix [M0]: it is real and independent of frequency. For a 
flexible damped upper structure [M(ω)] becomes complex; it depends on frequency and 
structural damping. For the material damping in the upper structure the “dynamic inertia” is  
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}{}{
2

][)]([
1

222

2

0 j

T

j

n

j jjj

SS
i

MM 
 





                                                             (21) 

Here [M0] is the conventional real inertia matrix 6 x 6; i is an imaginary unit; ωj is natural 
frequency of j-th mode for the fixed-base upper structure (different from that in (4)!); {Sj} is a 
line 1 х 6 of the participation factors for the j–th mode (the inertial normalization of the 
natural modes is assumed); λj is the j-th modal damping coefficient calculated in the FEM 
codes along with natural frequencies/modes of the fixed-base structural model. We see that in 
static case (i.e. for zero frequency) dynamic inertia is similar to the conventional “static” 

inertia even for flexible structure. 

In our sample 1D model the fixed-base structure has two degrees of freedom. The line of 
participation parameters for each mode consists of a single element, so in our case “dynamic 

inertia” is just a “dynamic mass”.  

Table 2 shows basic modal parameters of the fixed-base sample structure.  
Table 2. Natural frequencies/modes of the fixed-base structure 

Number Natural 
frequencies, 

Hz 

Modal 
displacement of 
the lower mass, 

t-1/2 

Modal 
displacement 
of the middle 

mass, t-1/2 

Modal 
displacement 
of the upper 
mass, t-1/2 

Participation 
factor, t1/2 

1 6.023 0.0 -0.6189 -0.7855 -1.4044 
2 19.700 0.0 -0.7855 0.6189 -0.1666 

 

Changing circular frequencies ω in (21) for ordinary frequencies f in Hz, we get for our 
sample structure 

if

f

if

f
fM

222

22

222

22

7.19*05.0*27.19

1666.0*

023.6*05.0*2023.6

4044.1*
0.3)(





                  (22) 

Real and imaginary parts of complex dynamic inertia are shown in Fig.5.  
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Fig.5. Real and Imaginary parts of “dynamic mass” for a sample structure 
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We see that the second “fixed-base” mode unlike the first one does not impact “dynamic 

mass” due to the comparatively small participation factor shown in Table 2. 

The second step of CAM is also performed in the frequency domain. The equation of motion 
for weightless rigid “contact surface” is 

)}()]{()][([)}({)]}([)]({[ 0

2  UBCUMC soilbsoil                                            (23) 

Here [Csoil(ω)] is an impedance (dynamic stiffness) matrix for rigid stamp on the flexible 
foundation (complex frequency-dependent matrix 6 x 6); [B(ω)] is a transformation matrix 
from free-field motion to the so-called “foundation input motion” for rigid stamp on the 
flexible foundation for certain type of seismic waves (complex frequency-dependent matrix 6 
x 6, if there is a six-component excitation); {U0(ω)} is seismic excitation displacement in the 
control point of free foundation in the frequency domain (complex frequency-dependent 
column matrix 6 x 1, if excitation is a six-component one); {Ub(ω)} is the response absolute 
displacement of the rigid base mat (complex frequency-dependent column matrix 6 x 1).  

“Foundation input motion” is defined as motion of weightless rigid base of the same geometry 
as an actual one for the same seismic excitation. For the simplest but common case when rigid 
base mat is resting on the surface of soil foundation, seismic waves are vertical body waves in 
horizontally-layered media, and control point is in the centre of the mat in the free surface of 
the soil, [B(ω)] is a unit matrix (i.e., weightless rigid base moves similar to the free surface of 
the soil). In our sample model this is also the case; otherwise model in Fig.1 would not 
represent SSI.  
Equation (23) enables obtaining transfer functions TF(ω) for the rigid base mat: 

)]()][([)]}([)]({[)]([)};()]{([)}({ 12

0  BCMCTFUTFU soilsoilb

        (24) 

Transfer functions from the excitation displacements to the response displacements (24) are 
similar to those from the excitation accelerations to the response accelerations. These 
functions are the result of the second step in CAM. In our sample they will be exactly the 
same as curves for “material structure and viscous soil” damping in Fig.2. However, (24) is 
much more convenient than conventional general approach (18), because even for very 
detailed structural models we operate in (24) only with matrices 6 x 6. 

After the second step of CAM one has a choice between two options. The first option is to use 
transfer functions (24) in the frequency domain and excitation accelerations in the time 
domain to get the response accelerations of rigid base mat in the time domain using Fast 
Fourier Transform (FFT) technique. Then one can analyze fixed-base structural model with 
prescribed 6D base motion, different from the initial seismic excitation or from the 
“foundation input motion”. As structural damping is more or less homogeneous, such analysis 
can be done using modal approach and even spectral approach (six excitation spectra will be 
applied at the base instead of usual three ones). 

The first concern about this variant is that fixed-base model does not allow analysis of the 
internal forces in the base mat itself. The second concern is that there are no means to 
consider flexibility of basement in this option. Nevertheless, the assumption about the rigidity 
of base mat is rather common. 

The second option in CAM after the second step is to keep SSI model for the time-domain 
analysis instead of the fixed-base structural model in the previous option. The idea is to set up 
a new “platform” SSI model with some simplified impedance matrix [D(ω)] instead of 
[Csoil(ω)]. The choice of simplified matrix will be discussed below. Then we adjust the 
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“foundation input motion” [B(ω)]{U0(ω)} to some “modified platform excitation” {V0(ω)}. 
The most obvious requirement for such a modification is that the base mat response in the 
simplified platform model should be equal to the “true” one from (24): 

  )}()]{()][([)]}([)]({[)( 0

12  UBCMCUb

)}()]{([)]}([)]({[ 0

12  VDMD                                                                             (25) 

Equation (25) gives us the modification matrix [T(ω)] from the “foundation input motion” to 
the “modified platform excitation”: 

)}()]{()][([)}({ 00  UBTV 

)]([)]}([)]()]}{[([)]({[)]([)]([ 1221  soilsoil CMCMDDT           (26) 

One can derive from (26) the alternative formula for [T(ω)] 

)]([)]}([)]()]}{[([)]({[)]([][)]([ 2121  MMCCDDET soilsoil

                     (27) 

Here [E] is a unit matrix 6 x 6. Formula (26) means that the excitation modification may be 
treated as the addition of some excitation to the initial one. This additional excitation depends 
on the difference between “platform” and “true” impedances. 

Now let us discuss the choice of simplified impedance matrix [D(ω)]. The logic of the 
previous section tells us that to keep modal approach applicable one must get homogeneous 
damping for the platform model. If we are going to use conventional modal approach, we 
should just take Rayleigh coefficient β previously used for structure and apply it to the soil 
springs in the new platform model. 

For our sample model it means that 1D impedance [D(ω)] in our new platform model will be 
formed by the same spring as “true” impedance [Csoil(ω)] in the old model, but soil dashpot in 
this new platform model will have a new viscous coefficient in kN/(m/s) 

89957,01091978,6103,1 43  zz kc                                                             (28) 

As compared to the “true” viscosity coefficient (12) this makes considerable difference: 

“true” damping matrix element (1,1) has excessive viscosity Δc11=110,5-0,89957=109,6 
kN/(m/s). Returning to the previous section we can estimate the impact of this excessive 
viscosity to the damping matrix in the generalized coordinates: 
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                                                                                     (29) 

Comparing the off-diagonal terms in (29) with the off-diagonal terms in (17) we conclude that 
great values of the off-diagonals terms in (17) were caused by this excessive viscosity. When 
we took it away in a new platform model, we provided zero off-diagonal terms in damping 
matrix and made modal approach applicable. 

So, this second option of CAM returns modal (and spectral) approach for SSI models, but 
platform excitation should be modified as compared to the “foundation input motion”. The 
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advantage of this option as compared to the previous one is that one can ease the rigidity of 
the base mat, using distributed soil springs and dashpots in the platform model. This will 
provide internal forces in the mat itself. Besides it will change the response of the upper 
structure. However, the results will be approximate. Some additional details about using 
CAM with flexible base mats may be found in previous publication of the author (Tyapin, 
2011). 

 

CONCLUSION 

Conventional modal approach (and spectral approach based on modal one) meets serious 
difficulties when system has heterogeneous damping, as modal responses along natural modes 
do not part in such system. This is exactly the case for soil-structure interaction: one damping 
in the structure, another one (usually far greater in scale) – in the “soil dashpots” modelling 

“wave damping” in soil.  

The results of the conventional modal approach neglecting the coupling between modal 
responses prove to be non-conservative. The attempts to cut down modal damping values lead 
to the excessive conservatism in one frequency region and non-conservatism in other region. 

The author proposes to address these difficulties using CAM - combined asymptotic method, 
developed by the author some time ago.  

The idea is to return to the model with homogeneous damping. It could be either a fixed-base 
structural model (in this case we are to obtain base motion out of the seismic excitation 
beforehand, which is done in CAM in the frequency domain using the “dynamic inertia” 

concept), or a platform model with homogeneous material damping or Rayleigh damping. In 
the latter case we are to account for the difference between “true” damping in soil dashpots 
and artificial damping in platform model. This is done in CAM by means of modification of 
the conventional “foundation input motion” to special “modified platform excitation”. This 

motion is obtained in the frequency domain and always includes rotational components. 
Both options of CAM help to achieve desirable result: modal (or spectral) approach can be 
used in soil-structure interaction analysis though with some additional preliminary 
procedures. 
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