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ABSTRACT 

The Fused Deposition Modelling process is a highly efficient Rapid Prototyping approach that 

makes it possible to rapidly generate even much complicated parts. Unfortunately, the Fused 

Deposition Modelling is affected by several parameters, whose setting may have a strong 

impact on the components resistance. This paper is dedicated to the study of the effects 

generated by the Fused Deposition Modelling production parameters on the tensile strength 

and on the stiffness of the generated components, tackling the question both from 

experimental and from numerical points of view. For this purpose, an analytical model was 

developed, which is able to predict the resistance and the stiffness properties, based on the 

number of contours deposited around the component edge and on the setting of the other main 

parameters of the deposition process. 

Keywords: Fused Deposition Modelling (FDM), Strength, Stiffness, Contouring, Analytical 

model 

 

INTRODUCTION 

The Rapid Prototyping (RP) process experienced great advances in the last years: nowadays, 

it is possible to build parts, having even very complicated geometries in a short time and at 

low costs when their requested mechanical proprieties are not too high. The main advantages 

consist in the easy generation of a 3D prototype from a concept and in the possibility of 

making the manufacturing and assembly tasks less complicated. For this purpose, it is often 

possible to consolidate sub assemblies into single units, thus reducing the number of parts, the 

handing time, and the number of mating surfaces, which helps simplifying the mounting task. 

Moreover, the RP process is highly flexible since it is easy and economic to rearrange the 

process, when design changes must be taken into account. Unfortunately the strength and 

stiffness of components realised with this technology are not so much high and they are 

difficult to be defined also because they have a strong anisotropy. 

The Fused Deposition Modeling (FDM) from Stratasys is a typical example of a RP process, 

leading to the aforementioned characteristics. The FDM is able to produce prototypes from 

plastic materials, such as ABS or ULTEM, and the process consists in the deposition of 

filaments of the material at the semi-molten state. The filament is fed through a nozzle, 

located at the output of a heating device, and is deposited onto the partially constructed part. 

Since the material is extruded and laid in tracks at a semi-molten state, the newly deposited 

material fuses with adjacent material that has already been deposited. Afterwards, other 

material tracks are deposited, upon the completion of the current layer; then the deposition of 

a new layer is started. 

The final mechanical properties of parts obtained by means of the FDM process, are, often, 

uncertain since they are influenced by a large combination of production parameters, which 
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are, really, difficult to combine in order to increase the strength and the stiffness of the 

realised parts. As a consequence, the practical application of components processed by the 

FDM (and in general by RP techniques), is limited to low loaded products and to those whose 

failures do not lead to severe effects. Regarding this issue, Refs. (Lee, 2005; Howell, 2001) 

contain the remark that FDM processed parts may have some potentials for use in fields of 

mechanics, where compliant members or mechanisms are used. Possible applications are in 

the manufacturing of electro-mechanical actuators or in that of children’s toys, for instance 

bows and arrows or small catapults as presented by (Lee, 2005). In these cases, the not high 

resistance is well compensated by the lower cost, by an easier mounting process and 

especially by good elastic properties. It is therefore important to predict not only the strength, 

but also the stiffness, and how they relate to process parameters.  

The main factors, potentially having an impact on the product properties, are the part building 

direction (inclination of part in a build platform, as it is being generated), the bead width, the 

raster angle (direction of the beads), the air gap (gap between two adjacent rasters on the same 

layer) and the layer thickness (thickness of the deposited layer).  

Several papers deal with the influence of these parameters: the issue is mainly tackled by 

running experimental campaigns, assisted by techniques of Design of Experiment (DOE). The 

experimental task presented in (Ahn, 2002) involved flat specimens tested under axial load, in 

agreement with the Standard for tensile tests on plastics. The results emphasize the effect of 

the raster orientation and of the air gap, while the bead width does not seem to have a great 

effect. The resistance is magnified, as the direction of the beads is parallel to that of load, 

while is very low when the rasters are perpendicular to the applied force. The air gap has an 

easily comprehensible effect: when it is positive, the structure is loosely packed, can be 

rapidly generated, but has a lower strength, conversely a negative air gap increases the 

building time, but also the density and, consequently, the strength of products. The influence 

of these parameters is confirmed also in (Lee, 2005), with reference to FDM processed sling 

shot toys. Anitha (2001) also studied the effect of the layer thickness, which proved to 

increase the performance when the thickness decreases. On the other hand, the raster width 

confirms to be of a low significance. The FDM processed parts exhibit anisotropic properties 

not only regarding the raster orientation, but also with reference to the build orientation. The 

related effect is shown in (Lee, 2007) with reference to differently manufactured specimens to 

be loaded under compression. The choice of the plane on which the part is sitting during its 

generation has strong effects both on the cost and on the time of the process, as discussed in 

(Xu, 1999; Thrimurthulu, 2004). The previously cited parameters are considered in (Sood, 

2010), where the authors perform an extensive experimentation on specimens under axial and 

flexural loads. Techniques of DOE are applied for the campaign planning and for the 

processing of the results. The surface response approach is successfully used for the 

development of analytical models relating the tensile strength to the levels of the process 

inputs. 

What can be remarked is that no paper in literature deals with the effect of contouring. The 

conventional procedure of FDM requires the application of a sufficient number of offset 

contours around the edge of the modelled part; the internal part is filled by oriented rasters in 

order to fulfil the surface roughness requirements. Contouring not only affects the surface 

finishing, but also the tensile strength of components, and its effect may be even very strong, 

depending on the contour width and on its direction with respect to the load. Only in (Ahn, 

2002) the contouring effect on the tensile strength is briefly tackled, emphasizing the 

important role at preventing stress concentration and crack initiation at the fillets, thus at 

improving the mechanical properties. However, no quantitative results are presented 
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regarding the relationship between the strength or the stiffness and the number of contours. 

Another interesting aspect regards predictive models, i.e. models that, taking the 

aforementioned factors into account, are able to predict the part resistance. As previously 

remarked an interesting empirical model was developed in (Sood, 2010), but it also does not 

take the contouring effect into account, moreover the part stiffness is not investigated.  

The present paper investigates the effect of contouring by running suitable experimental tests, 

and by developing an analytical model that is able to match the experimental results. The 

analytical model is useful to get a better comprehension of the structural response of FDM 

processed parts and to predict their behaviour in terms of strength and stiffness, based on the 

parameters of the process.  

 

MATERIALS AND METHODS 

The experimental campaign involved specimens made of ABS-M30, a widely used material 

for FDM processed parts. Its mechanical properties are the following: Ultimate Strength of a 

single bead, USb=33MPa, Elastic Modulus of a single bead, Eb=2,400MPa, Tensile 

Elongation to failure EF=4%. The material characterization was performed on samples 

manufactured by injection moulding supplied by the material producer. Injection moulded 

specimens are commonly used (Ahn, 2002) with the purpose of determining reference values 

for strength and stiffness of plastic materials (such as ABS) in isotropic conditions.  

The first step in the arrangement of the experimental campaign consisted in the design of 

specimens and in the determination of the related parameters. The specimens have been 

shaped according to the ASTM D638 – 10 (ASTM D638, 2010) Standard, with reference to the 

geometry of the first typology. A drawing of the specimen (a flat dog bone shaped specimen 

with uniform rectangular section at the gage and head connected with large fillets) is shown in 

Fig. 1 with the indication of its main dimensions. The curvature radius has been carefully 

chosen at a preliminary stage of the research: specimens with the same geometry but different 

fillet radii have been manufactured and tested under tensile load. By examining the fracture 

locations, the most suitable radius value has been determined, in order to significantly reduce 

the stress concentration at the fillet, thus to avoid the crack initiation. A radius of 244mm, 

much greater than that suggested by the aforementioned Standard, was finally chosen as the 

best compromise between the specimen full length and the necessity to prevent unacceptable 

ruptures at the fillet; this is an important issue, since this kind of failures could have been 

enhanced by the anisotropic structure of the material (Ahn, 2002).  

 

Fig.1 Specimen geometry with its main dimensions in mm.  
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Five different types of specimen have been manufactured by varying the two following 

parameters: 

 The building orientation: specimens grown up along the thickness or along one of the 

two principal dimensions. 

 The number of contour lines: number of contours deposited close to the edges of 

components along one of the two principal dimensions. 

Offset contours Oriented rasters

Offset contours

Oriented rasters

(a) (b)
 

Fig.2 Generation of specimen types: (a) type 2 and (b) type 5, with details on geometry and main dimensions 

 

The combination of the aforementioned parameters, which generates the different layout of 

contour planes, is well clarified in Fig. 2. The offset contours (coloured in grey) are, firstly, 

deposited in a stated number around the specimen edges. In Fig. 2 (a) is represented a 4 

contoured specimen with the along the thickness building orientation whereas in Fig. 2 (b) is 

represented a 1 contoured specimen with the along one of the principal dimension building 

orientation; thus the total number of deposition planes depends on the building orientation 

Then the FDM machine deposits alternate layers by changing the direction of the beads 

usually from +45° to -45° in order to fill in the empty space left by the contours deposition. 

Four sample types have been generated with the along the thickness building orientation such 

as the example of Fig. 2 (a): they have, respectively, 1 (Type 1), 4 (Type 2), 7 (Type 3) and 

10 (Type 4) contours. The Type 5 specimen generated with the along one of the principal 

dimension building orientation such as the example of Fig. 2 (b), has 1 contour line. The other 

factors have been kept at fixed levels: the bead width, which proved to be of a poor 

significance (Ahn, 2002), has been maintained at the value of 0.5mm while the raster angle 

has been set as +45°/-45°. This is the mostly used setting, resulting in a pattern of beads, all 

having the same inclinations with respect to the specimen axis, and also to the load direction. 

The air gap has been kept at the value of 0mm (meaning that the beads are all adjacent to each 

other). The effect of this factor is well clarified by (Lee, 2005), moreover a 0mm air gap is the 

generally used setting, as a positive value leads to parts with bad surface finishing, whereas 

the negative values lead to dense components, with too long manufacturing times for RP 

applications. Finally, the layer thickness has been set to 0.25mm, which is again the most 

widely used value (one half of the bead width), considered also in (Sood, 2010; Lee, 2007). 

The specimen features are summarized in Table 1.  
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Table 1 Factors and related levels 

Factor Level 

Building orientation and number of contour lines 

Specimen built along the thickness 

with 1, 4, 7, 10 contour lines (Types 

1, 2, 3, 4). 

Specimen built along one of the 

principal dimension with 1 contour 

line  (Type 5) 

Bead width 0.5 mm (dimension b in Fig. 2) 

Raster angle +45°/-45° 

Air gap 0mm 

Layer thickness 0.25mm (dimension h in Fig. 2) 

 

Five samples have been considered for each specimen type, following the recommendations 

of ASTM D638, 2010 Standard and of most Standards dealing with static tests on plastics.  

 

Specimen

Extensometer

Fixture

Fixture

Actuator

Loading 

cell

 

Fig.3 Experimental set-up during a tensile test 

 

The tests have been performed on an oleo-dynamic press in the displacement-controlled mode 

at the actuator velocity of 20m/s. Since misalignments may seriously affect the results 

(Olmi, 2011), each specimen has been carefully aligned with respect to load and fully 

constrained at machine clamps: for this purpose, the length of the specimen heads was 
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suitably chosen, depending on the length of the fixtures. Afterwards, an extensometer with a 

maximum elongation of 5mm and a knife-edge distance of 12.5mm, has been applied at 

specimen gage for the on-line measurement (open loop measurement) of longitudinal strain, 

thus meeting the requirements of ASTM D638, 2010 Standard. A photo of the experimental 

set-up is shown in Fig. 3. The considered outputs are three: the gage strain by the 

extensometer, the entity of load and the actuator displacement throughout the whole test. 

These two yields were provided directly by the testing machine, in particular load has been 

measured by a loading cell having a full scale of 25kN, which appeared to be adequate, if 

compared to that used in (Ahn, 2002). The measuring chain consisted of the three 

aforementioned analog outputs, connected to a connector block. The platform output was 

connected to a DAQ Card, inserted into a laptop slot. A specifically developed LabView 

program assisted the data acquisition task: sampling was conducted at the 20Hz rate, with on-

line data recording during the test and automatic detection of the maximum load. The 

experimental results have been processed for the determination of the stress-strain curves, of 

the slopes in the linear field, namely the Young’s modulus (E), and of the strengths in terms 

of the maximum load before failure (US). 

 

EXPERIMENTAL RESULTS 

Some examples of the stress-strain curves determined experimentally are shown in Fig. 4 (a) 

for the specimen types 1 to 4, i.e. specimens generated along the thickness, with different 

numbers of contours. By comparing the curves, it can be observed that the greater is the 

number of contours, the greater is the stiffness (as well as the elastic modulus) and the greater 

is the maximum strength. Moreover, when the number of contours increases, the percentage 

of elongation to failure decreases (with the exception of the first specimen type), indicating a 

more brittle behaviour.  
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Fig.4 Stress-Strain curves obtained for specimens of different types 

 

Samples of stress-strain curves for specimen types 5 and 2 are compared in Fig. 4 (b). It can 

be observed that they are very close: a possible reason is that these two specimen types have 

the same overall number of offset contours, considering the number of contours per layer 

multiplied by the total number of layers, Eq. (1). 

 

 lcc nnN  2  (1) 
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In Eq. (1) the terms nc and Nc indicate the number of contours per layer and the overall 

number of contours respectively, while the symbol nl stands for the number of layers. Eq. (1) 

results in Eqs. (2) and (3) accounting for specimen types 2 and 5, where subscripts are related 

to the two types. As reported in Table 1, the symbol h stands for the layer thickness. 

 

 
h

H
Nc  422  (2) 

 
h

B
Nc  125  (3) 

 

It can be easily observed that Nc2=Nc5.  

All the results have been processed for the determination of strengths and of Young’s moduli. 

Following the recommendations of ASTM D638, 2010 Standard, the Ultimate Strength (US) 

has been computed as a ratio between the maximum load in the test and the full cross-

sectional area at specimen gage. The calculation of US is shown in Eq. (4), where Fmax. 

indicates the maximum force value throughout the test, while B and H are the two dimensions 

of the rectangular cross-section at specimen gage.  

 

 
HB

F
US


 .max  (4) 

 

The Young’s modulus (E) has been determined, considering the first linear portion of the 

stress-strain curve and estimating its slope by linear fitting procedures. The obtained values 

are shown in the two histograms in Fig. 5: they are estimated as averages over five 

replications. The worst scenario of twice the standard deviation is here considered for the 

determination of confidence intervals.  

Again the results for Type 5 specimens appear to be quite close to those computed for Type 2 

specimens.  
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Fig.5 Comparison between the experimental data (Young’s Modulus and Ultimate Strength) and the results of a 

rough numerical model considering the longitudinal beads only  

The obtained results seem to suggest that the mechanical response of the tested specimens is 

strictly related to the total number of contours, i.e. beads having a longitudinal layout; when 
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the number of contour lines is the same, whatever is the manufacturing procedure, the 

specimens have the same mechanical behaviour. Moreover, when the total number of 

contours increases, both the stiffness and the strength increase. In the current hypothesis (just 

the longitudinal beads drive the specimen response) the Ultimate Strength computed 

analytically (USac) and the Young’s modulus (Eac) can be computed as follows. 

 

 
HB

NhbUS
US cb

ac



  (5) 

 
HB

NhbE
E c

ac



  (6) 

 

In the histograms of Fig. 5, the values computed by Eqs. (5) and (6) are compared to those 

experimentally retrieved. The serious disagreement observed indicates that the mechanical 

properties must depend on the inclined beads so that they have to be, actually, considered in 

the model. 

This consideration is well supported by the maximum discrepancies observed in the case of 

Type 1 specimens, where almost the totality of the cross section consists of oriented rasters. 

Therefore, there is indeed a strict relationship between the number of contours and the 

mechanical response, however this simple relationship is not sufficient to fully understand 

and predict the mechanical behaviour. This was the main motivation to the development of 

the following analysis that considers both longitudinal and oriented rasters co-operating to 

sustain the applied load.    

 

ANALYTICAL MODEL 

The analytical model has been developed according to some hypotheses, summarized in the 

following lines. 

 According to ASTM D638, 2010 Standard, FDM specimens can be regarded as slender 

beams, whose length is much greater than width and height. Consequently, it appears 

to be reasonable to presume an infinite length of the specimen gage. As the external 

load is applied, the specimen gage gets deformed with uniformly distributed strain.   

 The infinite gage is meshed into a series of elements, whose characteristics are 

suitably defined for each specimen type, as detailed below.  

 In each of these elements the total load is shared between longitudinal and inclined 

rasters, so that their axial elongation is maintained the same. In other words, all the 

beads co-operate to sustain the total load, working in parallel.  

The model is able to process the following inputs. 

 Geometry data regarding the overall dimensions of the section (B and H), the bead 

width and height (b and h) and the raster angle for alternate layers ().  

 The elongation under axial load of a portion of the specimen gage considered as an 

“element”, whose length must be suitably determined as exposed below. The entity of 

this elongation is called v.  
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 The ultimate strength USb of each bead.  

The outputs are finally the following data. 

 Estimation of the current axial force applied to the specimen, with reference to its 

elongation.  

 Determination of specimen stiffness, as well as its Young’s modulus.  

 Estimation of the tensile strength, by a suitable modelling of the breakage event, as a 

consequence of failures of longitudinal and angled beads.   

It must be remarked that, since the elements are connected in series, they transmit the same 

external load. Consequently, it is sufficient to compute the load transmitted by one element, to 

determine the current load being axially applied to the whole specimen.  

(b'') (c'')

(b') (c')

(b) (c)

(a)

Longitudinal 

beads

Inclined 

beads

Inclined 

bead with 

full length

Elements

 

Fig.6 Side and front views of the specimen gages meshed into several elements: (a) the whole gauge, (b), (b’), 

(b”) undeformed and enlarged view, (c), (c’), (c”) deformed and enlarged view for specimen types 2 (b, c), 4 (b’, 

c’), 5 (b”, c”) 

 

Some samples of elements for specimen Types 2, 4 and 5 are shown in Fig. 6. It can be 

observed that their length is adjusted, so that each element, independently of the specimen 

type, contains the same typologies of beads, in particular (referring to one layer): 

 Longitudinal rasters. 
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 One inclined bead, extended over the width B’ or H’. 

 Some shorter and inclined beads symmetrically disposed with respect to the inclined 

bead extended over the width B’ or H’. 

Each element covers the whole cross section and has a length depending on the number of 

contours, on the specimen type and on the inclination angle. In particular, the element length 

is computed by Eq. (7) for Types 1 to 4 and by Eq. (8) for Type 5, where the terms B’ and H’ 

stand for the width of the section containing inclined beads.  

 

       tgBtgbnBL c  '2  (7) 

       tgHtgbnHL c  '2  (8) 

 

As shown in the sketch of Fig. 6  the dilatation of a single element is indicated by the v 

parameter. The current load transmitted by the rasters can be determined once the 

displacement v and the stiffness properties of the beads are known: full details on the 

computation procedures are provided in the following paragraph.   

Longitudinal rasters 

The stiffness of each longitudinal bead (kl) can be easily estimated, according to Eq. (9), 

where the single bead is modelled as a longitudinal beam loaded by an axial force. The force 

transmitted by each bead is computed as the product between the stiffness and the applied 

displacement v. Since all the rasters work as a parallel of springs, the total value of the axial 

force (Fl) transmitted by the contours of a single layer is given by Eq. (10), where the force 

transmitted by one bead is multiplied by the number of longitudinal rasters.  

 

 
L

Ebh
kl   (9) 

 cll nvkF  2  (10) 

 

Inclined bead with full length 

The model of the inclined bead is represented in the scheme of Fig. 7, where a slender beam is 

loaded by a vertical force, along the specimen axis. When the force is applied, an axial load is 

transmitted to the beam so that the inclined bead gets axially deformed. Its deformation 

implies a vertical displacement v of its lower extremity. As previously remarked, the entity of 

the displacement v is the driving factor of the analytical model. The intensity of the vertical 

force, F(0), transmitted by the inclined bead may be determined as a function of v, by means 

of the procedure described below. 

Let l(0) and l(0) be respectively the length of the inclined bead and its elongation under the 

applied load. Considering the scheme reported in Fig. 7, the Eqs. (11) and (12) can be easily 

determined; the meaning of angle  is clarified in the same figure. 
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   00 ll 

 

Fig.7 Model of the inclined bead loaded by the force F(0) and elongated with vertical displacement v 

 

           αlll cossin 000    (11) 

           αlvll sincos 000    (12) 

 

The entity of displacement v can be computed by solving Eq. (12), while the relationship in 

Eq. (11) can be used to determine the sine of the angle . Thus in Eq. (13) v can be expressed 

as a function of geometrical parameters. 

 

 

                     
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α
l

l
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sincos1sincos

sinsin1sincos

2

2
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0

00

22

0

2
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2
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
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 (13) 

 

The following step consists in the determination of the relationship between F(0) and v. By 

considering again the scheme in Fig. 7, the axial load acting on the bead can be easily 

calculated as F(0)/sin(). Thus, considering the stiffness of a beam under axial load the 

elongation l(0) is given by Eq. (14). 

 

  

 

 

 

   

 
 



sin

sin 00

0

0

0






hbE

lF

l

hbE

F

l  (14) 

 

Then Eq. (14) joint with Eq. (13) results in Eq. (15) that can be regarded as an irrational 

equation in the unknown F(0). Finally F(0) can be easily determined by Eq. (16) as a function 

of a fixed displacement v, along the specimen axis.  
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  
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Inclined beads with decreasing length 

Each element exhibits a number of inclined beads with decreasing length proportional to the 

distance from the central raster (the full length one) considered in the previous paragraph. The 

scheme reported in Fig. 8 (a) shows the inclined beads in the element for a Type 2 specimen 

and their proportions with respect to the full length one indicated as the “bead (0)”, while the 

others are referenced by increasing numbers. The total number of inclined beads, n, is given 

by Eq. (17) whereas the length of the (i-th) inclined bead, l(i), is expressed by Eq. (18).  
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As explained in the previous paragraph, the vertical force, with direction along the specimen 

axis, must be computed as a function of the displacement v. In this case, the force sustained 

by the (i-th) inclined bead, F(i), must be determined. For this purpose, the procedure 

described in the previous paragraph can be used; however, the application of Eq. (16) requires 

a brief discussion. 

Let us consider the (i-th) bead, having a l(i) length. By observing Fig. 8 (b) and with the 

hypothesis of all the beads working in parallel, it is clear that its lower extremity (i.e. point D) 

moves downwards by the displacement v. The entity of the total displacement v is given by 

the superposition of two effects: the elongation of the contour beads vC(i), which implies the 

vertical displacement of the upper extremity of the inclined bead (i.e. point C), and the 

elongation of the (i-th) bead itself v(i). Therefore the elongation v, as clearly indicated in Fig. 8 

(b), results the sum of the two aforementioned contributions (v=vC(i)+v(i)). By inverting this 

relationship, the vertical displacement corresponding to the elongation of the (i-th) bead along 

its axis is v(i)=v-vC(i) that is, of course, lower than the total displacement v. Therefore Eq. (16) 

is still valid for the computation of the force transmitted by the (i-th) bead, under the 

condition of replacing the displacement v by the term v(i)=v-vC(i). 
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Fig.8 Inclined beads with reduced length (a) and determination of the vertical displacement to be considered in 

the stiffness model (b) 

 

Under the hypothesis of uniform strain field at specimen gage, it is possible to easily compute 

vC(i), according to Eq. (19). The displacement v(i) is consequently computed as indicated in Eq. 

(20) 
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It can be observed that the Eq. (20) is fully consistent with conditions at the boundaries, as the 

term v(i) is coincident with v for i=0, i.e. for the inclined bead with full length, and decreases 

to zero, for increasing value of i. For a great value of i the first effect vC(i), is much greater 

than the second one v(i): the axial dilatation of the inclined beads is in fact very low, due to 

reduced length and high axial stiffness. Since the ratio v(i)/l(i)  given by the ratio between Eq. 

(20) and Eq. (18) is equal to the ratio v/l, Eq. (16) is valid for all the inclined beads and results 

in Eq. (21).  

 



4
th
 International Conference on Integrity, Reliability and Failure 

Funchal/Madeira, 23-27 June 2013 14 

  
 

 

       0

2

2

sin1cossin   FhbE
l

v
F

i

i

i 































  (21) 

 

Adhesive force between the beads  

As previously remarked, in the FDM process an ABS filament is extruded through a nozzle 

and deposited onto the partially constructed part. As a consequence of a zero value of the air 

gap, all rasters are placed side by side. Thus, filament deposition at a semi-molten state 

implies that the just deposited track fuses with the adjacent material. The outcome is that any 

single bead is not completely free to get deformed under the applied load, as presumed above. 

Its elongation is partially constraint by the adhesive force acting at the interface between each 

couple of adjacent beads. Since the effect of the adhesive force arises from the difference 

between the elongations of the contiguous rasters, it is reasonable to apply the model 

represented in Eq. (22). 

 

      1.. 2  iiadiad llCF  (22) 

 

The adhesive force at the interface between the (i-th) and the ((i-1)-th) beads, named, Fad.(i), is 

proportional to the difference between elongations (l(i) and l(i-1)), with a constant, Cad., to be 

experimentally calibrated. Moreover, a factor two is considered to account for the effect of the 

adhesive forces between the inclined beads at the left-upper part of the element in Fig. 8 (a) 

symmetrically positioned respect to the inclined bead with full length. It can be observed that 

all the beads forming the longitudinal contours experience the same elongation, while the 

inclined rasters have generally different dilatations along their axes. Consequently, the 

adhesive force effect arises only when considering oriented rasters. This is the reason why the 

notations in Eq. (22) explicitly refer to this group of beads. Moreover, the greater is the 

number of inclined beads (e.g. for Type 1 specimen, see Fig. 6), the greater is the described 

effect.  

 

Computation of the total vertical force and modelling the bead rupture event 

In the previous paragraphs it has been shown how to determine the force transmitted by the 

longitudinal beads and the inclined rasters, over just one layer of the specimen section. The 

total force, yielded by the analytical model, Fa, is finally computed in Eq. (23), where the 

calculated components are combined together and the result is multiplied by the number of 

layers, nl.  
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The whole algorithm has been implemented on a calc-sheet and completed by logical controls 

for the simulation of the failure event of every single bead. In particular, the computed force 

for each bead is compared to the maximum force along the sample axis that can be sustained 

by the rasters. It depends on the ultimate strength of a single bead, USb, on the raster 

orientation (longitudinal or inclined), and on the raster angle. The threshold values for 

longitudinal and inclined beads, Ta_l and Ta_, are respectively indicated in Eqs. (24) and (25).   

 

 hbUST bla _  (24) 

   sin_  hbUST ba  (25) 

 

The value of the force transmitted by the single bead is left unchanged, when lower than the 

related threshold, and is automatically switched to zero, when greater, thus modelling the 

local rupture event.   

 

COMPARISON TO EXPERIMENTAL RESULTS AND DISCUSSION 

The previously described model has been applied for the prediction of the mechanical 

behaviour of the tested samples, and then it has been compared with the experimental data for 

validation purposes.  

Suitable stiffness models make it possible to compute the total force Fa, as a function of a 

fixed displacement v, related to the length of the gage element, i.e. dimension L of Fig. 6. The 

basic idea is to apply the analytical model as a simulation of an experimental tensile test. On 

one hand, trials have been conducted in displacement controlled conditions, with the force on-

line measurement, on the other hand the numerical model has been applied in order to 

determine the Fa for a large amount of v values corresponding to the test runs from the start to 

specimen failure. Under the hypothesis of uniform strain over specimen gage, the strain value 

may be computed as v/L. The first step consists in the estimation of a sufficiently large strain 

range, from zero to the maximum elongation expected during the tensile tests. This range is 

assumed as the strain interval throughout the test to be simulated. The maximum strain value 

is then converted into a displacement value, by multiplying it by the length L of the element. 

This displacement interval is finally divided into a sufficiently high number of steps, thus 

reproducing the resolution of experimental sampling. Finally, every force value is divided by 

the gage cross section (B·H) for the computation of nominal stress.  

The preliminary step before the comparison between analytical and experimental results 

consisted in the calibration of the constant Cad. used in Eq. (22). For this purpose, the 

experimental results of the sample Type 1, have been taken into account. As mentioned 

above, the adhesive force effect involves the inclined beads, whereas it does not regard 

longitudinal contours. Accordingly the results related to Type 1 specimen has been considered 

for the calibration task since this geometry contains the largest number of inclined rasters with 

respect to all the investigated configurations. The value of Cad. parameter has been adjusted, 

so that the analytical results were able to match the experimental ones: reference was made to 

nominal stress values over a wide range of strain in the elastic field. The value of 

Cad.=200N/mm has been determined and then maintained in the processing regarding the 

other sample types.  
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Fig.9 Analytical stresses plotted versus experimental ones for the same values of strains in the elastic field and 

for different specimen types: (a) Type 1, (b) Type 2, (c) Type 3, (d) Type 4, (e) Type 5 
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The diagrams reported in Fig. 9 show comparisons between the experimental values of 

nominal stress and the analytically computed ones. In particular, the analytical values are 

plotted versus the experimental ones, referring to the same strain at specimen gage in the 

linear-elastic field. The experimental data have been recorded during one of the five trials 

conducted for each specimen type. The previously mentioned calibration task has been 

performed, on the basis of the first diagram (Fig. 9 (a)), which refers to Type 1 specimen. By 

looking at the other diagrams (Fig. 9 (b-e)), a good agreement can be remarked: all the data 

points are very close to the diagonal line (representing perfect agreement) and the errors are in 

the order of few percentage points.  

 

0

5

10

15

20

25

30

0.0 0.5 1.0 1.5 2.0

N
o

m
in

a
l S

tr
e

s
s
 [

M
P

a
]

Strain [%]

Exp.

Anal.

0

5

10

15

20

25

30

0.0 0.5 1.0 1.5 2.0

N
o

m
in

a
l S

tr
e

s
s
 [

M
P

a
]

Strain [%]

Exp.

Anal.

0

5

10

15

20

25

30

35

0.0 0.5 1.0 1.5 2.0

N
o

m
in

a
l S

tr
e

s
s
 [

M
P

a
]

Strain [%]

Exp.

Anal.

0

5

10

15

20

25

30

0.0 0.5 1.0 1.5 2.0

N
o

m
in

a
l S

tr
e

s
s
 [

M
P

a
]

Strain [%]

Exp.

Anal.

0

5

10

15

20

25

30

0.0 0.5 1.0 1.5 2.0

N
o

m
in

a
l S

tr
e

s
s
 [

M
P

a
]

Strain [%]

Exp.

Anal.

(a) (b)

(c) (d)

(e)
 

Fig.10 Comparison between analytically simulated and experimental stress-strain curves for different specimen 

types: (a) Type 1, (b) Type 2, (c) Type 3, (d) Type 4, (e) Type 5 

 

The results of the analytical simulations of stress-strain curves are shown in Fig. 10, again 

with the reference to the five specimen types. The simulated curves are superimposed to the 

experimental curves: the comparison shows a very good agreement in the linear-elastic field. 



4
th
 International Conference on Integrity, Reliability and Failure 

Funchal/Madeira, 23-27 June 2013 18 

The Young’s moduli (Ea) have been computed, following the same procedure for the 

processing of the experimental data, according to ASTM D638, 2010 Standard: the slopes of 

the linear parts of the curves have been estimated by linear fitting strategies. The computed 

elastic moduli are shown in the histogram of Fig. 11 (a): it compares the analytical yields to 

the experimental ones. The good agreement is, again, confirmed by the low percentage errors, 

never exceeding 6%.  

The analysis of the diagrams reported in Fig. 10 shows that the response of the analytical 

model is not satisfactory in the plastic field, i.e. the model is unsuitable to predict the non-

linear behaviour of the material. However, it can be argued that FDM products are usually 

loaded in the elastic field, even when huge deformations are required, thanks to their 

compliance properties (Lee, 2005). Moreover, the described model of the bead rupture event 

makes it possible to estimate the Ultimate Strength. The logical controls, as mentioned in the 

previous paragraph, automatically set the raster force to zero, when the US is overcome: this 

is the reason why the analytical curves experience abrupt decreases. The predicted strengths 

(USa) have therefore been determined as the maximum values in the plotted curves. 

Analytical and experimental resistances are compared in the histogram in Fig. 11 (b). The 

results are again well consistent, with generally low percentage errors (up to 4%), except for 

the last specimen type (Type 5), where the error is about of 9%.  
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Fig.11 Comparison between the experimental data (Young’s Modulus and Ultimate Strength) and the results of 

the analytical model   

 

CONCLUSIONS 

The present paper has dealt with the effect of contouring on the static strength and stiffness of 

FDM processed parts. The issue has been tackled both experimentally and analytically, with 

the development of a closed form predictive model. The main topics can be summarized in 

the following points.  

 FDM is a rapid prototyping technique that makes it possible to build 3D parts at reduced 

costs in a reduced time. The low strength can be compensated by good compliance 

properties. The analysis of the state of the art has showed that the effect of contouring on 

the mechanical behaviour has never been studied and, furthermore, predictive models, 

which significantly relate the process parameters to the final properties, are actually 

missing.  

 The study has been focused on ABS-M30, a widely used material for FDM processed parts. 

Specimens of five different types have been manufactured, taking two factors into account: 
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the building direction and the number of contours. Experimental tensile tests have been 

performed according to the ASTM D638, 2010 Standard.  

 The results have been processed for the determination of the Ultimate Strength and of the 

Young’s modulus. Since a preliminary tentative of directly relating the number of contours 

to the mechanical retrieved characteristics produced inacceptable errors, it was decided to 

careful develop an analytical model, taking all the main process parameters into account 

and considering all the beads sharing the applied load.  

 The analytical part has led to the development of stiffness models to be differently applied 

to the beads: contours placed longitudinally with respect to the load direction, and inclined 

beads having a fixed raster angle. The closed form algorithm that has been developed and 

presented is able to model the rupture event of every single bead and, consequently, to 

predict the failure of the whole part. Moreover, it can be easily implemented on a calc-

sheet. 

 The numerical results have been calibrated and validated by comparing them to the 

experimental outcomes. A really good agreement has been verified, as confirmed by very 

low errors (in the order of few percentage points) in the prediction of the Ultimate 

Strength, of the Young’s module and of the stiffness of the tested samples.  
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