8-10 July 2025

ICS, FEUP Campus, Building B **Porto**

Training Course for Structural Engineers (24 hours)

Design of Advanced Techniques for Seismic Protection: Seismic Isolation and Energy Dissipation

COORDINATORS

Humberto Varum (University of Porto, Portugal) Alessandra Aprile (University of Ferrara, Italy)

UďA

:((

a Construção

LECTURERS

Aprile, Alessandra – University of Ferrara, WISEcivil, Italy Camata, Guido – University of Chieti-Pescara, ASDEA, Italy Guerreiro, Luís – University of Lisbon, CERIS, Portugal Pavese, Alberto – University of Pavia, EUCENTRE, Italy Zerbin, Matteo – University of Ferrara, WISEcivil, Italy

COURSE OBJECTIVES

Enable professionals to design structures using passive seismic protection techniques, namely base isolation and energy dissipation systems.

TEACHING MATERIAL

Lecture notes in PDF format. Spreadsheets for preliminary design of passive protection devices.

PREREQUISITES

Good level of knowledge of Structural Dynamics and Seismic Engineering and good level of knowledge of English.

EDUCATIONAL CREDITS

Participation in the course grants the recognition of 24 educational hours. To obtain the certificate, participants must pass the final exam.

ORGANIZATION

The administrative organization will be operated by Mr. Manuel Carvalho & Ms. Amélia Azeredo (<u>manuel@fe.up.pt</u> & <u>ics@fe.up.pt</u>)

REGISTRATION*

Fees _____ Regular Ph.D. Students

 until April 30th
 after April 30th

 550,00 €
 650,00 €

 400,00 €
 500,00 €

Link for registration: [link]

* Registrations will only be considered after payment. The course is subject to a minimum of 30 participants. If this requirement is not met, the amount paid will be fully reimbursed.

Program

8-10 July 2025

Design of Advanced Techniques for Seismic Protection: Seismic Isolation and Energy Dissipation

	DAY I – 8 July	DAY 2 – 9 July	DAY 3 – 10 July
8:30-9:00	Greetings from the Course Coordinators (H. Varum and A. Aprile).		
9:00-10:45	Seismic isolation and energy dissipation: evolution, perspectives, examples and field lessons (L. Guerreiro)	Design using the DDBD method for the isolation system of the reinforced concrete frame previously introduced. The case is presented in detail and assigned as an exercise to be completed independently (M. Zerbin)	Construction and maintenance aspects. Presentation of case studies of existing buildings seismically retrofitted using seismic isolation and/or energy dissipation (G. Camata)
	Coffee break	Coffee break	Coffee break
1:15-13:00	Seismic design in nonlinear field using the DDBD (Direct Displacement-Based Design) method. Method's theoretical background and examples (A . Aprile)	Energy dissipation with Hysteretic Dampers (HD), theory and practice. Design criteria using the DDBD Method. Verification Criteria. Regulatory aspects according to EN 1998-1:2024 (A. Aprile)	Research frontiers and regulatory aspects (EN 1998- 1:2024; EN 15129:2018). Experimental qualification tests and acceptance tests for isolators and dampers (A. Pavese)
	Lunch	Lunch	Lunch
4:30-16:15	Presentation of the case study of a reinforced concrete frame structure addressed using the DDBD method. The case is presented in detail and assigned as an exercise to be completed independently (M. Zerbin).	Design using the DDBD Method for braces with HD for the reinforced concrete frame previously introduced. The case is presented in detail and assigned as an exercise to be completed independently (M. Zerbin)	Structural verification using NLTHA (Nonlinear Time History Analysis). Selection of accelerograms. Nonlinear modelling of reinforced concrete elements, shear walls, isolation devices, and energy dissipation devices (G. Camata)
	Coffee break	Coffee break	Coffee break
5:45-18:30	Seismic isolation, theory and practice. Types of isolators. Design criteria using the DDBD Method. Verification Criteria. Regulatory Aspects according to EN 1998-1:2024 (A. Aprile).	Dissipation with Viscous Devices (VD), Theory and Practice. Design criteria using the DDBD Method. Verification Criteria. Regulatory aspects according to EN 1998-1:2024 (A. Aprile)	Performing NLTHA for the reinforced concrete frame previously introduced using MidasGen software. Discussion of the results obtained from the exercises of the previous lessons (M. Zerbin)
3:30-19:00			Final Exam