
LARA Tutorial

Tiago Carvalho, Pedro Pinto, João Bispo, Ricardo Nobre, Luís Reis, and
João M.P. Cardoso

University of Porto, FEUP, Porto, Portugal

5. MATLAB to C/OpenCL Compilation

April 20th, 2016

HiPEAC Spring'16 Computing Systems Week (CSW)
20-22 April 2016, Porto, Portugal

https://www.hipeac.net/csw/2016/porto/

Objectives

• Understanding MATLAB to C Compilation

• Using LARA to guide MATLAB-to-C compilation

• Understanding OpenCL Code Generation

2

Compiling MATLAB to C

• Many projects are prototyped in MATLAB, but deployed in C
• So the code has to be translated between these two languages

• So we developed a C backend for MATISSE
• Capable of handling a non-trivial subset of MATLAB

• Generates efficient code

• How to compile?
• Website has a demo

• Types of the input variables must be specified by the user

3

Is it fast?

• We tested a MATLAB example from the San Diego Vision Benchmark
Suite (Disparity, FullHD image)
• Original MATLAB: >4 min

• Optimized MATLAB: 12.2s

• Original MATLAB compiled with MATISSE: 6.86s

• Modified MATLAB to use MATISSE extensions: 4.19s
• We’re improving MATISSE: We aim to reach 2.75s and we know how to do it

• Original C version: 2.7s

4

5.1 subbandSingle

• Goal
• Compile a simple MATLAB program

• File
• subband.m

• Strategy
• List the type of each variable

• Define its type

• Notes:
• Try removing all type information except for “z” and “m”.

5

5.2 Smart Define Types

• Goal
• Automatic type specification

• Only works for certain code styles

• File
• test.m

• Strategy
• Find all inputs

• See which name format they have

• Define the type based on that

6

5.3 Use Primitives

• Goal
• Take advantage of MATISSE-specific extension functions

• File
• subband.m

• Strategy
• Find MATLAB calls to “zeros”

• Replace with a call (“matisse_new_array_from_dims”) that does not initialize
the values

7

5.4 Insert Directives

• Goal
• Remove expensive runtime checks by adding MATISSE-specific directives

• File
• subband.m

• Strategy
• Find the function with the specified name
• Add the “assumption” directives

• If all functions are safe, then the “Unchecked” mode that
automatically does this.
• Not available in the web demo.

8

5.5 Add ByRef Directive

• Goal
• Reduce number of allocations in example

• File
• need_for_byref_test.m

• Strategy
• Modify function declaration

• Move variable allocation

• Adapt function calls

9

MATLAB to OpenCL Compilation

• OpenCL: Suitable for GPUs and multi-core CPUs
• Early FPGA implementations as well

• Early stages

• Not available in web demo

10

MATLAB to OpenCL Compilation (2)

• How it works:
• Most code is compiled by the C backend normally

• Programmers insert directives (manually or with LARA) in sections to
parallelize

• The generator generates OpenCL for those sections, along with the necessary
wrappers.

• The code can then run on any OpenCL-capable device, such as modern GPUs.

11

Takeaway Points

• MATISSE features a MATLAB to C/OpenCL Compiler

• LARA can be used to preprocess the MATLAB file, as well as specify
additional program properties (e.g. Types)

• Generated code can be improved by using MATISSE extensions
• These can be placed manually, or through LARA

12

